Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

---

Special Information Immuno-Compromised People Should Know About Drinking Water

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

---

We are pleased to present to you this year’s Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We at USF would like you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensure the quality of your water.

Our water is sourced from five ground water wells at depths from 120 to 340 feet and the City of Tampa Water System. The water, pumped from the Floridian Aquifer, is chlorinated for disinfection purposes, treated with zinc phosphate for corrosion control, and distributed to the campus. Greek Housing and USF Health are fed separately by the City of Tampa Water System.

The Florida Department of Environmental Protection (FDEP) conducted a statewide assessment of public drinking water systems beginning in 2004. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells. There are 12 potential source(s) of contamination identified for this system with a moderate susceptibility level(s). The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp. If you have any questions concerning this report or your water utility, please contact Chris Fleischer, Building Maintenance & Operations Manager, Physical Plant Utilities, at (813) 974-2307. We encourage our customers to be informed about their water utility.

The University of South Florida routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated, this report is based on the monitoring results for the period of January 1st to December 31st, 2013. Data obtained before January 1, 2013 and presented in this report are from the most recent testing done in accordance with the laws, rules and regulations.

This report shows our water quality results and what they mean.
The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

**IDSE (Initial Distribution System Evaluation):** An important part of the Stage 2 Disinfection Byproducts Rule (DBPR). The IDSE is a one-time study conducted by water systems to identify distribution system locations with high concentrations of trihalomethanes (THMs) and haloacetic acids (HAAs). Water systems will use results from the IDSE, in conjunction with their Stage 1 DBPR compliance monitoring data, to select compliance monitoring locations for the Stage 2 DBPR.

**LRAA (Locational Running Annual Average):** The average of sample analytical results or samples taken at a particular monitoring location during the previous four calendar quarters.

**MCL (Maximum Contaminant Level):** The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the Maximum Contaminant Level Goals (MCLGs) as feasible or is the average of all samples taken during the year if the system monitors less frequently than quarterly. Range of results is the range of individual sample results.

**MCLG (Maximum Contaminant Level Goal):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

**MRDL (Maximum residual disinfectant level or MRDL):** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

**MRDLG (Maximum residual disinfectant level goal or MRDLG):** The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectant to control microbial contaminants.

**N/A:** Means not applicable.

**ND:** Not detected and indicates that the substance was not found by laboratory analysis.

**Units:**
- Parts per billion (ppb) or Micrograms per liter (µg/L) - one part by weight of analyte to 1 billion parts by weight of the water sample.
- Parts per million (ppm) or Milligrams per liter (mg/L) - one part by weight of analyte to 1 million parts by weight of the water sample.
- Picocuries per liter (pCi/L) - A measure of the radioactivity in water.

---

### TEST RESULTS TABLES

#### Radiological Contaminants

<table>
<thead>
<tr>
<th>Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo./yr.)</th>
<th>MCLG Violation Y/N</th>
<th>Highest Result</th>
<th>Range of Results</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Alpha Emitters (pCi/L)</td>
<td>05/2008</td>
<td>N</td>
<td>6.5</td>
<td>ND</td>
<td>0</td>
<td>15</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>2. Radium 226 + 228 or Combined Radium (pCi/L)</td>
<td>08/2011</td>
<td>N</td>
<td>1.7</td>
<td>ND</td>
<td>0</td>
<td>5</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

**Results in the Level Detected column of radiological contaminants, inorganic contaminants, synthetic organic contaminants including pesticides and herbicides, and volatile organic contaminants are the highest average at any of the sampling points or the highest detected level at any sampling point, depending on the sampling frequency.**

#### Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo./yr.)</th>
<th>MCLG Violation Y/N</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Cadmium (ppb)</td>
<td>09/2011</td>
<td>N</td>
<td>2</td>
<td>ND</td>
<td>5</td>
<td>5</td>
<td>Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints</td>
</tr>
<tr>
<td>4. Nitrate (as Nitrogen) (ppm)</td>
<td>07/2013</td>
<td>N</td>
<td>1.1</td>
<td>ND</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>5. Sodium (ppm)</td>
<td>09/2011</td>
<td>N</td>
<td>9.4</td>
<td>ND</td>
<td>NA</td>
<td>160</td>
<td>Salt water intrusion; leaching from soil</td>
</tr>
<tr>
<td>6. Copper (tap water) (ppm)</td>
<td>08/2011</td>
<td>N</td>
<td>0.84</td>
<td>None</td>
<td>1.3</td>
<td>1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
<tr>
<td>7. Lead (tap water) (ppb)</td>
<td>08/2011</td>
<td>N</td>
<td>2</td>
<td>None</td>
<td>0</td>
<td>15</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
</tbody>
</table>

---

As you can see by the tables, our系统 had no violations. We’re proud that your drinking water meets or exceeds all Federal and State requirements.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. USEF is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested.