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ABSTRACT 

Cellular membranes are important targets for many membrane-active peptides and 

drug compounds. Here we are interested in deciphering how lipid membranes are perturbed by 

several membrane-active molecules, including the transmembrane domain of the influenza M2 

protein (M2TM), aggregates formed by a synthetic polyglutamine peptide, and three 

polyphenol compounds (i.e., tamoxifen, genistein, and verapamil). We employ phase-separated 

ternary lipid model membranes in the form of giant unilamellar vesicles (GUVs) to simulate raft-

like structures that have been proposed to govern many important processes in plasma 

membranes (e.g., intracellular singling and trafficking). Specifically, we use fluorescent 

microscopy to interrogate how those membrane additives modulate the phase behavior of 

free-standing GUVs, as well as the miscibility transition temperature (Tm). We find that M2TM 

increases Tm and causes vesicle budding; polyglutamine aggregates disrupt lipid membranes; 

and the three polyphenol compounds exert disparate effects on GUV Tm.  
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CHAPTER ONE: 

INTRODUCTION 

 

1.1: Historical development of cell membrane theory and model 

In ancient kingdoms, walls bordering the entire kingdom are vital to its survivability. The 

defensive walls act as a separation between the chaos outside and the order inside, as well as 

screening what passes through those walls via gates. Not only that, some kingdoms even had 

inner walls that separate the royalty from the lower class social strata. Ingenuity of humans in 

history to create kingdoms with walls has long been designed by nature. Humans within 

themselves carries analogous blueprint for kingdom formation known as cells. Cell membranes 

are akin to walls surrounding kingdoms.  

 

Since the invention of microscope by Zacharias Janssen, cell membrane theory made its debut 

through observation of plant’s cell wall by Anthony Leeuwenhoek in the 17th century. It took 

about two centuries later for scientists like Moritz Traube and Heinrich Quincke to formulate 

cell theory for animal cells. In short, Quincke postulated that cell membranes are made of a 

layer of fat that is semipermeable [1]. Semipermeable membranes allow the passing of solvent 

but not solute molecules. A century later, Hugo Fricke added to this understanding by 

measuring cell membrane thickness to be 3.3 nm [2]. He mistakenly interpreted cell thickness 

data to be composed of only a single molecular lipid layer. Fast forward a decade later, the first 

file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_1
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lipid bilayer model came about from Gorter and Grendel, though it was an inaccurate model 

[3]. They attributed membrane permeability to electrostatic repulsion rather than to 

hydrophobic tendency found in the core of the membrane. Finally in 1950s, J. David Robertson 

with the help of powerful electron microscopy interpreted cell membranes to be of bilayer 

nature with hydrophilic headgroups [4].  

 

Going back to late 19th century to early 1970s, a train of distinguished scientists such as 

Wilhelm Pfeffer, Ernest Overton, Leonor Michaelis, Seymour Singer and Garth Nicolson to name 

a few, helped in constructing what we now have as the fluid mosaic model of cell membranes. 

This model shows embedded protein structure within the heterogeneous lipid bilayer 

membranes (Figure 1).  

 

 

Figure 1: Fluid Mosaic Model of cell membranes developed by Singer and Nicolson in 1972. The 
model shows opposing headgroups away from the hydrophobic center. There are also proteins 
embedded partially/fully within the membrane. These proteins are free to move around its 
surrounding liquid bilayer. Image source: 
https://commons.wikimedia.org/wiki/File%3ACell_membrane_detailed_diagram_en.svg 
  

file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_3
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_4
https://en.wikipedia.org/wiki/Leonor_Michaelis
https://commons.wikimedia.org/wiki/File%3ACell_membrane_detailed_diagram_en.svg


  

3 
 

1.2: Outline of the thesis 

This thesis work focuses on the interaction study between various peptide/polyphenol 

molecules with lipid membranes in the form of giant unilamellar vesicles (GUVs). Specifically, 

addition of peptides or polyphenol molecules alters intrinsic properties of lipid membranes 

such as miscibility transition temperature (Tm) and membrane curvature. There are four major 

parts that make up this masters thesis. First, GUVs of various lipid compositions were 

concocted to study how lipid compositions modulate GUV phase separation. Cell membranes 

contain raft-like structures that are more rigid compare to its “lax” surrounding. In model 

membranes, liquid-ordered (Lo) phase is analogous to lipid rafts while liquid-disordered (Ld) 

phase is analogous to the “lax” surrounding [5]. GUVs with Lo and Ld phase separation have 

been suggested as reasonable models to represent heterogeneous organiziton in cell plasma 

membranes. Part two covers the transmembrane domain of influenza M2 protein (M2TM) 

addition to GUVs. Part three discusses the consequences of adding aggregates formed by a 

syntemtic polyglutamine (polyQ) peptide to GUVs. This work conlcudes with studying the effect 

of polyphenol molecules on the miscibility transition temperatire Tm of ternary GUVs. (Tm 

studies were also performed for pure GUVs and M2TM-premixed GUVs.) In Tm  study, 

temperature was monitored when phase coexisting GUVs become homogeneous. Fluroescent 

images of dye-doped GUVs were taken to observe membrane deformation.  

  

file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_5
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1.3: Important instruments  

Optical microscope was heavily utilized in this work. To show phase separation in Lo-Ld 

phase coexisting GUVs, two modes of microscope imaging were used, i.e., bright field and 

epifluorescence. In both modes, Lo phase corresponds to the dark region on GUVs and the Ld 

phase corresponds to the bright region (i.e., the dye molecules used preferentially partition into 

the disordered Ld phase). GUVs with ~30 µm diameter were used. GUVs were produced from 

lipid mixtures using the electroformation process described by Angelova [6]. A temperature 

probe (Type T) was placed inside an isolated custom-built copper chamber to measure GUV 

miscibility transition temperature Tm. For comparison, atomic force microscopy data were also 

presented. 

 

1.4: Reasons of the studies 

There are many reasons why the studies in this thesis are useful. The influenza A virus 

for example depends on M2 peptide for virus invasion, replication and egress. It is known that 

the endosomal sorting complex required for transport (ESCRT) is not responsible for influenza A 

virus budding and scission. Hence a better understanding on how M2 peptide hijacks host cell 

membranes is crucial [7]. It is also important to better understand how polyQ aggregates 

disrupt lipid membranes. Pathogenic expansion of the CAG repeat in the gene encoding 

huntingtin (htt) protein leads to the formation of polyQ mediated aggregates that are probably 

responsible for the progressive neuronal Huntington’s disease (HD) in humans [8]. Polyphenol 

molecules like tamoxifen and genistein are similar to each other functionally when it comes to 

prevention of breast cancer. Tamoxifen has been widely used as an anticancer drug because of 

file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_6
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_7
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_8
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its ability to compete with endogenous estrogen-receptor binding sites [9]. Verapamil is a 

calcium channel blocker that treats hypertension, angina, and cardiac dysrhythmia. Thus 

studies of these polyphenol molecules will enlighten us on molecular interactions with lipid 

membranes so that we could improve on current available drugs.

file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_9
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CHAPTER TWO:  

INSTRUMENTATIONS AND METHODOLOGY 

 

2.1: Introduction   

This thesis work began around August of 2014 in trying to study phase separation of 

ternary GUVs. A year into working in the lab, Dr. Pan came to acquire a state of the art atomic 

force microscopy (AFM). This instrument will be introduced briefly at the end of this chapter as 

many of AFM works has been complimentary to this thesis work. This chapter will discuss 

instrumentations such as the light microscopy and electroformation method, central to this 

work.  

 

2.2: Electroformation methods and instrumentation 

This section will cover lipids used and instrumentation for GUV synthesis. The process 

for synthesizing GUVs is called electroformation. In this process, two electrodes with deposited 

lipids are surrounded in aqueous solution. The electrodes will be attached to a function 

generator to generate AC voltage. This alternating voltage will excite both electrodes at a 

certain frequency, causing the lipids deposited on the electrodes to swell and aggregate 

according to hydrophobicity. All of the chemicals, lipids, and drug molecules are purchased 

from Avanti Polar Lipids, Sigma Aldrich, and Fisher Scientific. PolyQ peptide (KK-Q35-KK) and 

M2TM peptide (residues 22-46 of M2 protein, SSDPLVVAASIMGILHLILWILDRL) were either 
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synthesized by our collaborator, Dr. Jianfeng Cai’s group in the Department of Chemistry (USF), 

or by the Peptide Synthesis Center at USF (http://chemistry.usf.edu/research/peptide/ ). The 

two peptides are both prepared by solid phase synthesis method, HPLC purification, and 

lyophilization. Lipids, including 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1, 2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC), egg-sphingomyelin (ESM), cholesterol (Chol), and 

the dye molecule 1, 2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (rhodamine-DPPE) were 

prepared in chloroform or chloroform/methanol 3:1 v/v as stock solutions and stored at -80ᵒC. 

Similarly, stock solutions of M2TM, tamoxifen, genistein, and verapamil are prepared and 

stored at -80ᵒC. For polyQ, aggregates are formed by dissolving the peptide in 10 mM HEPES pH 

7.4 buffer and stored at 4oC. 

 

2.2.1: Lipids 

Ternary mixtures of DOPC, ESM, and cholesterol were used in preparing GUVs through 

electroformation method described by Angelova et al [6]. 0.2mol% rhodamine-DPPE dye was 

added to lipid mixtures for fluorescence imaging. Electroformation is performed at high 

temperature (60oC). GUVs prepared have lipid ratios ranging from 1:1 to 3:1 (DOPC:SM 

mol/mol) with 0-50 mol% Chol. (All lipid mixtures were prepared in mole ratio, fraction, or 

percentage.) Within this lipid ratio region, vesicles have been shown to contain both Lo and Ld 

phases as well as exhibiting interesting critical-like fluctuations when temperature is elevated 

[10]. 

  

http://chemistry.usf.edu/research/peptide/
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_6
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8 
 

2.2.2: Pre-Electroformation 

Proper amounts of lipid stock solutions were mixed into a 10ml glass test tube. This 

mixture was sonicated and vortex briefly to ensure lipid homogeneity. Instead of electrode, 

Indium-Tin-Oxide (ITO) glass slides were used as conductor. ITO slides are only coated on one 

side. The homogenous lipid mixture was smeared onto heated ITO slides (~60oC) and vacuumed 

for 1 hour to remove any excess organic solvents. ITO slides were sandwiched with O-rings like 

in Figure 2. The aqueous solution used here was 100 mM sucrose and 10 mM HEPES @ pH7.0. 

Figure 3 shows instruments used. 

 

 

Figure 2: Electroformation setup using ITO-glass slides, O-rings, and AC power supply. (a) 
Ternary lipid mixture smeared on the top conductive side of 2 cleaned and heated ITO slides. O-
ring acted as a container for the sucrose solution needed for GUV formation. (b) ITO slides 
sandwiched as illustrated and AC voltage (2 V) applied with temperature at 60 ± 5°C. Heating 
element is not shown here.  
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Figure 3: a) Left: Fisher Scientific™ Digital Vortex Mixer Right: Fisher Scientific™ MH Series 
Mechanical Ultrasonic Cleaners. b) Left: Benchmark Scientific H3760-HS-E Right: Across 
International VO-16020m Bottom: Robinair 2-Stage Vacuum Pump 15500. 
 

  

http://www.testequipmentdepot.com/benchmark-scientific/hotplates-and-stirrers/digital-hotplate-stirrer-ceramic-230-v-h3760-hs-e.htm


  

10 
 

2.2.3: GUV synthesis 

The slide sandwiches shown in Figure 2 were slotted inside an in-house built aluminum 

heating block. Electroformation setup is shown in Figure 4. Alligator clips (insulator-coated 

outside, red color) were clipped on to the ITO slides and was used to deliver AC voltage 

produced by the function generator. Aluminum heating block was heated by dry bath incubator 

controlled by Digi-Sense Type-T temperature controller. Function generator was set to 2V @ 

10Hz for 2 hours and temperature at 60ᵒC. After 2 hours, AC voltage was turned off and 

temperature was slowly cooled down to room temperature.  

 

 

Figure 4: Setup of electroformation method. Function generator operates at 2 V AC voltage, 10 
Hz, and a sine waveform for 2 hours. Temperature was set to 60ᵒC for 2 hours and then slowly 
cooled down to room temperature. Instruments include Siglent SDG1025 Function Generator, 
Digi-Sense T-Type Temperature Controller, and VWR 13259-005 Dry Bath Incubator. 
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2.2.4: Post-Electroformation 

After cooling down to room temperature, GUVs were harvested into 100 mM fresh 

glucose and 10mM HEPES @ pH 7.0 solution. GUVs were viewed within the day of preparation 

itself, but not at least 30 minutes after harvesting. Visit 

http://faculty.cas.usf.edu/pan/videos.html for a complete video presentation of the 

electroformation method.  

 

2.3: Light Microscopy 

Optical microscope is an analytical tool that enables a researcher to view specimen up 

to 1000x its original size. Meaningful microscope magnification can go up to 1500x. The 

downside to high magnification is low intensity. The principle of a bright filed optical 

microscope is fairly simple. Light source emits light rays that are focused by a condenser that 

converges on the specimen. Light rays that illuminate the specimen will continue to diverge 

past the specimen and be magnified by an objective lens. The image produced by the objective 

lens will be inverted. Another lens known as the ocular/eyepiece lens will further magnify the 

image into our eyes and correct the inverted image, resulting in an upright final image. Image 

magnification can be calculated by multiplying the objective lens and the ocular lens. Figure 5 

shows a diagram of the light path in a basic microscope.  

http://faculty.cas.usf.edu/pan/videos.html
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Figure 5: Basic light path of an optical microscope. Light rays from the light source pass through 
the condenser and converge onto the specimen. The light that illuminates the specimen will 
reach the objective lens and form a magnified, inverted image. The image is further magnified 
by the ocular lens that falls into eyes. Magnification is determined by multiplying objective lens 
and ocular lens.  
 

Nikon ECLIPSE Ti-U inverted microscope was heavily employed in this thesis work. Besides 

bright filed light microscopy, fluorescent microscopy was also utilized. Fluorescent microscopy 
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has a different light source compared to bright filed light microscopy, a metal-halide lamp. This 

light source actually emits from the bottom of the specimen instead from the top in light 

microscopy mode.  Main components of this inverted microscope will be explained below 

(Figure 6).  

 

 

Figure 6: Nikon ECLIPSE Ti-U inverted microscope showing important components. Andor iXon 
Ultra 897 EMCCD is attached on the other side (not visible). 
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2.3.1: Light sources 

There are two types of light sources built into this microscope: halogen lamp and metal-

halide lamp. The halogen lamp runs on TI-PS 100W power supply for 100-240V. This halogenic 

light is used for viewing phase contrast (Ph) and bright-field (BF) of a specimen. In this mode, a 

dense area on a specimen will absorb the halogenic light and make that region dark, while the 

less dense areas will transmit halogenic light and appear bright. The metal-halide lamp runs on 

Prior L200US 250W power supply for 110-240V. This lamp is a type of high-intensity discharge 

(HID) gas discharge lamp and is used for viewing fluoro-luminescence specimen, known as 

fluorescent microscopy. A specimen needs to be dyed by fluorophores prior to using this 

imaging mode. When light hits specimen, areas on the specimen that contain fluorophores will 

be excited by the light by absorbing photons, and then re-emitting light with a different 

wavelength photons. Figure 7 shows power supplies for both imaging modes.  
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Figure 7: Top shows TI-PS 100W power supply for 100-240V used in bright-field mode. Bottom 
shows Prior L200US 250W power supply for 110-240V used in fluorescent mode.  
 
2.3.2: Objective lens 

Objective lens is key to magnifying specimens. The objective lens collects light rays from 

illuminated specimen and projects an inverted image. We have objective lenses with different 

magnifications (4-100x). 4-10x are low powered objectives. These objectives are good for 

viewing tissues and selecting regions of interest on a specimen. For high powered objectives, 

lenses range from 40-100x. These objectives are used to view cells and submicron specimen. As 

magnification increases, resolution length also increases, causing the image to have low 

intensity. Because of this, many objectives use fluid-based objectives such as oil-, water-, 

glycerol-immersion. The fluid’s large index of refraction helps to gather light rays into the 

objective lens, hence increases the intensity. Air-immersion long working distance CFI super 

fluor ELWD 60x was used for most of our GUV imaging. 
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2.3.3: Condenser and aperture 

Condenser allows light rays to be focused on the specimen. In Nikon Eclipse Ti-U, there 

are three imaging modes built into the microscope; BF, Ph, and external phase contrast. 

Imaging modes are interchangeable by rotating turret that carries various optical elements. 

Aperture diaphragm on the other hand, adjusts the size of field of view. The calibration of 

condenser and aperture diaphragm are only important for BF and Ph imaging modes. Most of 

this work was done in fluorescent mode. 

 

2.3.4: Specimen stage and preparation 

A specimen can be moved in x and y directions when mounted on the stage. Custom 

sample chamber was designed to accommodate small working distance of the objective lens. 

Sample preparation was done by further diluting harvested GUVs with 100 mM glucose and 10 

mM HEPES @ pH7.0 solution and then pipetted to a silicone gel well covered with cover slip on 

a glass slide. Cover slip will orient closest to the objective lens. GUVs images were obtained 

with Nikon Eclipse Ti-U equipped with Andor iXon Ultra 897 EMCCD camera. Coupled with 

highly complementary microscope software (NIS-Element), we were able to record GUV videos 

and capture images. 60x objective and 500 ms exposure time were used to take images and 

record videos (1 sec interval/frame). GUVs with fully Ld phase, Lo-Ld coexisting phases, and 

critical-like fluctuations were observed under fluorescent condition. Ld phase appears bright 

due to segregation of rhodamine-DPPE dye in that phase. 
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2.3.5: Focusing knob 

As the specimen stage allows x and y directions movements, focusing knob allows z 

direction movement of the objective lens. Focusing knob displaces the height of the objective 

lens relative to the specimen stage. There are two focusing sensitivity, coarse and fine focusing. 

Focusing is crucial to bring objective lens to its working distance in order for lens to function 

correctly. Since the sample cover slip will be closest to the objective lens, there will be “bead-

like” artifacts coming into focus first from coarse focusing. Upon seeing those artifacts, fine 

focusing was used to locate GUVs. Majority of GUVs were sunken down at the bottom of the 

sample chamber as sample was allowed to sit for 30 minutes prior to imaging.  

 

2.3.6: Temperature-controlled chamber for temperature-sensitive environment 

Since studies of GUV phase miscibility transition temperature Tm require stable 

environmental temperature surrounding the sample, a temperature-controlled chamber was 

machined out of copper to allow for both BF and fluorescent microscopy. The chamber is 

heated by a Thermo Scientific Haake ARCTIC A25 coupled with an AC 150 Immersion Bath 

Circulator. A water canal was machined inside the chamber and is connected to the bath 

circulator. A temperature probe (Type T) was used to measure the temperature of the sample. 

The probe was directly inserted into the sample solution via a small hole drilled through a 

plastic microscope slide. Temperature was read by Digi-Sense Temperature Controller (see 

Figure 4). Figure 8 shows the physical placing of chamber on the specimen stage. This in-house 

observation chamber was able to acquire down to 0.1ᵒC precision.  
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Using this observation chamber, Tm study was performed for M2TM, tamoxifen, genistein, 

verapamil and pure lipid mixtures. Polyphenol molecules and M2TM (by mol%) were added to 

lipid mixtures prior to electroformation to obtain appropriate GUVs for experiments. To avoid 

Tm hysteresis (i.e., Tm could be different depending on heating or cooling GUVs), all 

temperature ramping experiments were done by cooling from high to low temperatures. 

 

Figure 8: a) Left: Copper temperature-controlled chamber with a removable top. Water tubes 
are connected to bath circulator. Right: Placement of temperature-controlled chamber on top 
of the specimen on the stage. The top can be removed to allow for BF imaging. b) Thermo 
Scientific Haake ARCTIC A25 coupled with AC 150 Immersion Bath Circulator used for heating 
and cooling. Ultrapure water (18.2 ΩM-cm) was used as circulatory heating fluid.  
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2.4: Atomic Force Microscopy 

Atomic force microscope (AFM) is a powerful analytical tool because it can acquire 

nanoscale three-dimensional specimen topography as well as material properties (e.g., Young’s 

modulus). The first AFM was invented by Binnig et al. in 1986 [11]. AFM scans sample surface 

through a probe known as the “tip”. This tip is attached to a cantilever arm which has a 

deflective surface on the opposite side of the tip, on the cantilever arm. The deflective surface 

acts to deflect the laser beam focused on the top of the tip and the deflected beam is detector 

by a photodiode. As the tip scans across, height difference on the specimen surface will move 

the tip in the z-direction, hence moving the laser detected by the photodiode and result in a 

topographical map. Since the tip will be nanometers away from the surface, there are few 

forces that deflects the cantilever arm. These forces are repulsive force, electrostatic attractive 

force, and capillary force (in fluid). Ever since the invention of AFM contact mode, more 

imaging modes have been introduced. There is now non-contact mode, tapping mode, 

PeakForce quantitative nanomechanics (QNM) mode, and many more. To complement GUVs 

studies, we also used a fluid-compatible Multimode 8 AFM from Bruker to measure planar lipid 

bilayer topography in response to foreign molecules [12, 13]. Figure 9 shows an example of 

height images for a ternary lipid system exhibiting large and small phase separation near the 

critical point [14].  
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Figure 9: Height images of a ternary lipid system (DOPC/ESM/Chol) taken from “Macroscopic 
and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures 
Determined by Atomic Force Microscopy” paper [14]. Lipid compositions are indicated by the 
ratio of DOPC:eSM + cholesterol mole percentage. Scale bars are 200 nm. 
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CHAPTER THREE:  

GIANT UNILAMELLAR VESICLES  

 

3.1: Brief introduction to phospholipid and lipid bilayer 

Cellular membranes (e.g., outer plasma membranes and inner membranes enveloping 

nucleus, mitochondria, Golgi apparatus, and endoplasmic reticulum, etc.) contain many lipid 

species, including fats, sterols, phospholipids, mono-/bi-/tri-glycerides, sphingolipids, 

gangliosides, and many more. Despite the diversity of lipid species to choose from, it is well-

known that phospholipids are the most abundant lipids that constitute a cell membrane. 

Phospholipids are generally separated into two regions: polar hydrophilic headgroup and two 

hydrophobic fatty acid chains aka acyl chains (Figure 10). The hydrophilicity of the headgroup is 

due to the negatively charged phosphate group. This phosphate group is also connected to a 

glycerol backbone. On the other hand, the acyl chains are uncharged, therefore do not have an 

affinity towards aqueous solution like water. Within the acyl chain, there are saturated (single 

bonds) and unsaturated (double bonds) carbon bonds. The region on membrane where it is 

made up of saturated acyl chains is generally stiffer than the region with unsaturated chains.  
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Figure 10: Chemical structure of a phospholipid. Hydrophilic headgroup is composed of choline 
(red circle), phosphate (green circle), and glycerol (yellow circle). Hydrophobic acid chains can 
be either saturated (left) chain or unsaturated (right) chain with double bond (blue circle) 
making a “kink” in the chain. Image source: 
http://myhome.sunyocc.edu/~weiskirl/lipids_membranes.htm 
 

When lipids self-assemble, the hydrophobic tails will tend to group together (away from water), 

leaving headgroup exposed to the aqueous solution. This amphipathic behavior of lipids leads 

to the natural formation of membranes. There are different morphologies for lipid membrane 

structures, including liposome, bilayer sheet, and micelle, to name a few. In this work, the 

structure of liposomes best resembles cell membranes and was therefore utilized. Recently, 

Beltramo et al. developed a free-standing model of lipid membranes [15]. This model allows 

probing on both sides of the membrane as oppose to the older models mentioned above. 

 

http://myhome.sunyocc.edu/~weiskirl/lipids_membranes.htm
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_15
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As mentioned in Chapter 1, the function of cell membranes is to keep foreign molecules out 

and protect important organelles for the cell to operate properly. Cell membranes also function 

as a “gate” to allow smaller molecules to past through for important cellular processes. It is 

helpful to determine a reasonable lipid composition for in-vitro model membrane. GUV 

formation and imaging are explained in Chapter 2. Phase separation is observed in many 

electroformed GUVs. Also, there is a corresponding correlation between the amount of 

saturated lipid presenting in GUVs to the surface area of Lo. Lastly, the phase miscibility 

transition temperature Tm of GUVs composed of 3:2 DOPC/ESM + 32mol% Chol was determined 

to be 32.7ᵒC. 

 

3.2: Phase separated GUV behavior 

GUVs have become a favorable model for many contemporary studies of lipid 

membranes since early 1970s [5]. It is clear that phase separation was observed in ternary 

system GUVs. Prior to using DOPC/ESM/Chol mixtures, alternate mixtures containing POPC 

were investigated (i.e., POPC/brain-sphingomyelin/Chol). It was revealing to find that POPC-

containing mixtures posed issue for phase separation study as it is homogenous under 

fluorescence microscopy. The nano-scale phase separation behavior can only be unveiled by a 

much more powerful tool, such as AFM. We have conducted an experiment of a four-

component lipid bilayer system (DOPC/POPC/brain-sphingomyelin/Chol) with DOPC slowly 

replacing POPC and confirmed that DOPC induces micro-structure while POPC induces nano-

structure [16].  
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The difference between DOPC and POPC is found in the hydrocarbon chains. POPC contains one 

unsaturated (C=C double bond) acyl chain and DOPC contains two unsaturated acyl chains. 

These unsaturated acyl chains are what makes membrane tight packing hard [17].  

Sphingolipids (egg-sphingomyelin and brain-sphingomyelin) contain saturated acyl chains that 

are ideal for order and tight packing. In general, the unsaturated acyl chains like to stay with 

unsaturated chains, and saturated chains will like to stay with saturated chains. Therefore, 

DOPC will mix poorly with sphingolipids, while POPC will have better mixing tendency with 

sphingolipids. This qualitatively explains why large phase separation is observed in DOPC-

containing mixtures, but not in POPC-containing mixtures. 

 

During observation, not all GUVs from the same sample display the same phase behavior. Some 

would have more Lo domain surface area than others, and some would not phase-separate at 

all. This is due to the compositional heterogeneity that exists during the process of 

electroformation [18]. On a different note, a group has shown that domain formation can also 

be photo-activated if GUVs are exposed to light for some time [19]. Finally, Tm of a lipid 

composition differs as temperature ramping path follows a hysteresis loop [20]. To tackle the 

first issue, over 30 individual GUVs were recorded that display similar phase behavior at a given 

temperature to ensure bulk phase behavior of that sample. Next, exposure of GUVs to 

fluorescent light was limited by only focusing on small area of the glass slide and blocking off 

the light when not imaging. Temperature ramping pattern has been kept the same for all Tm 

study (from high to low temperature) to ensure all Tm are on the same side of the hysteresis 

loop. Another countermeasure that was taken was to make a control sample every time we 
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made a new lipid composition. The control sample acts as a reference point to connect all lipid 

compositions.  

 

3.3: Lipid compositions 

The work of increasing sphingolipid (i.e, ESM) ratio in the lipid mixture of 

(DOPC/ESM/Chol), shows increase of surface area of tightly packed Lo phase [14]. This Lo phase 

corresponds to the dark region in Figure 11. Contrary, the loosely packed unsaturated DOPC 

enriched Ld phase corresponds to the bright region under fluorescent microscopy in Figure 11. 

The brightness of Ld phase comes from the rhodamine-DPPE dye, which preferentially partitions 

into the Ld phase.  

 

Figure 11: Above shows fluorescence GUVs (@27°C) of various DOPC:ESM ratio +20mol% Chol; 
(A) 3:1; (B) 2:1;(C) 12:7; (D) 3:2; and (E) 1:1. Ld phase dominates at low ESM content, while Lo 
phase increased as ESM content increased.  
 

file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_14
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Though the surface area fraction of Lo/Ld phase is not prominent in Figure 11, one can still see 

the gradual area fraction increase from 3:1 to 1:1 ratio. Lo surface area fraction drastically 

increased as ESM is added past 1:1 ratio, which served as a threshold ratio for Lo phase 

domination, shown in Figure 12. GUVs did not become one Lo phase despite fourfold ratio of 

ESM to DOPC (Figure 12C). GUV appears to have two kinds of Lo domains; hemispherical 

capped and island-like. Images of these GUVs were taken several hours post-electroformation 

and at room temperature (27°C). GUV studies in this section were all observed in room 

temperature unless stated otherwise. This can mean given enough time for lipids to 

agglomerate, a single large Lo domain is more favorable than many Lo domains. 

 

 

Figure 12: Above shows fluorescence GUVs in ternary lipid mixture of DOPC:ESM+cholesterol in 
various DOPC to ESM ratio; (A) 1:2; (B) 1:3; and (C) 1:4. Cholesterol concentration was held at 
25%. Lo phase dominates at high ESM content. 
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3.4: Effect of cholesterol on GUVs 

The exhausted study of saturated-unsaturated lipid mixtures led to the examination of 

cholesterol effects in GUVs. GUVs of DOPC/ESM ratios 1:1, 3:2, and 2:1 were examined with 

various cholesterol %. For 1:1 ratio, 20% Chol seems to produce a hemispherical Lo phase that 

persists even at 30% Chol (Figure 13B, C). At 38% Chol, the well-defined boundary between Lo 

and Ld phases deconstruct into coexisting undulation of Lo-Ld (shown in Figure 13E). As Chol 

content increased to 42%, GUVs developed into a homogenous Lo phase (Figure 13F).  

 

 

Figure 13: Above shows fluorescence GUVs in ternary lipid mixture of (1:1) DOPC:ESM in 
various Chol concentration; (A) 10%; (B) 20%; (C) 30%; (D) 35%; (E) 38%; (some GUVs may 
display compositional deviation); and (F) 42%-one Lo phase. Images of GUVs were taken at room 
temperature (27°C). 
 

Evidently, addition of Chol increases Lo surface area which is similar to addition of ESM. For 3:2 

ratio, critical fluctuation occurs at 35% Chol (Figure 14E) while homogenous Lo phase occurs at 

38% Chol (Figure 14F).  
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Figure 14: Above shows fluorescence GUVs in ternary lipid mixture of DOPC/ESM 3:2 in various 
Chol concentration; (A) 5%; (B) 10%; (C) 20%; (D) 30%; (E) 35%-critical fluctuations; and (F) 38%-
one Lo phase. Images of GUVs were taken at room temperature (27°C). 
 

The trend follows as critical fluctuations for 2:1 ratio decreased down to 33% Chol (Figure 15D) 

and homogenous Lo phase at 35% Chol (Figure 15E). A summary of various lipid ratios 

experiencing critical fluctuations is shown in Figure 16. These critical fluctuations are in 

submicron scale and have irregular shapes. The irregular shapes arise from the high 

maneuverability of the Lo-Ld undulation compared to low maneuverability of distinct phase 

separation.    
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Figure 15: Above shows fluorescence GUVs in ternary lipid mixture of DOPC/ESM 2:1 in various 
Chol concentration; (A) 10%; (B) 20%; (C) 30%; (D) 33%-critical fluctuations; and (E) 35%-one Lo 
phase. Images of GUVs were taken at room temperature (27°C). 
 

 

Figure 16: The fluorescence GUVs showing critical fluctuations at different ternary lipid 
mixtures of DOPC:SM + %Chol at room temperature (27°C); (A) 3:1+30%; (B) 2:1+33%; (C) 
12:7+36%; (D) 3:2+35%; (E) 6:5+37%; (F) 1:1+38%.  
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The finding in Figure 14 shows that addition of cholesterol enhances the surface area of Lo 

domain. Since the majority of cholesterol is associated with the Lo phase, it seems that the rigid 

ring structure of cholesterol is more compatible with saturated sphingolipids, resulting in 

decreased mobility of the acyl chains of sphingolipids [21] (Figure 17). It has been proposed 

that the small polar head of cholesterol is what allows it to orient itself close to the membrane 

surface and next to the phospholipid headgroups [22]. Cholesterol-saturated lipid interaction 

has also been attributed to strong hydrogen bond between those two [23]. 

 

 

Figure 17: Cartoon model of ideal lipid bilayers composing of phospholipids (blue circle), acyl 
chains (red lines), and cholesterol (orange hexagons). Saturated acyl chains are more structured 
compared to its surrounding unsaturated acyl chains. This structural integrity stiffens Lo 
domains, while leaving Ld lipids to move freely around it.  
 

3.5: Tm study of GUVs 

Miscibility transition temperature Tm is the temperature where phase separated lipid 

bilayers become homogeneous. To find this phase coexistence, 3:2 (DOPC:SM) + 32% Chol 

GUVs were used. Given the imperfection of lipid organization, each GUV in the same batch will 

not be truly homogenous in terms of the lipid content. For this fact, one can obtain small 
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variation of Tm in the same batch of GUV. The way Tm was extrapolated was by taking the 

average of two temperatures: the temperature when majority of GUVs show critical-like 

fluctuations (at the verge of miscibility transition temperature) and the temperature when 

GUVs show homogenous Ld phase. Critical-like fluctuations were found to be at 31.7°C with 

32% Chol as opposed to 27°C for 35% Chol. So it seems the reduction of cholesterol resulted in 

temperature increase in order for GUVs to display critical-like fluctuations. Vice versa, the more 

cholesterol content, the smaller Tm becomes.  

 

 

Figure 18: Above shows fluorescence GUVs temperature ramping of (3:2) DOPC:SM + 32% Chol; 
(A) 23.0°C; (B) 30.5°C; (C) 31.7°C-critical fluctuations; and (D) 35.8°C -one Ld phase. 
  



  

32 
 

As for the interaction between Lo domains and their surrounding Ld phase, the boundary is 

regulated by hydrophobic mismatch [25]. The Lo-Ld height difference is well established by 

many studies [16, 25-28]. At the boundary, Lo domain gradually decreases its height to meet 

with the surrounding Ld phase (smaller height) [25]. This way, the hydrophobic acyl chain of 

ESM on domain perimeter will not be exposed to the aqueous environment, i.e., less 

unfavorable energetic cost [25]. The energy per unit length at domain perimeter due to lipid 

bending and splaying is called line tension [29]. In other words, hydrophobic mismatch at the 

Lo-Ld boundaries determines line tension. Not only that, it is favorable for lipid bilayers to 

minimize line tension by merging multiple domains into a single giant domain over time (i.e., 

smallest domain perimeter when all domains are merged together). This is the reason why 

most GUVs display polarized domain (Figure 11). As temperature approaches Tm (from the low 

end), hydrophobic mismatch becomes smaller and ultimately line tension drops down to 0 at 

critical fluctuation regime. Figure 18 images reflect the decrease in line tension as temperature 

approaches Tm. 

 

Furthermore, Veatch et al. has shown substituting brain-sphingomyelin (BSM) with egg-

sphingomyelin (ESM) increases miscibility transition temperature of GUVs [18]. This means that 

ESM-membranes will have more stable and closely packed domains compared to those formed 

by BSM-membranes [17]. Also, ESM-membrane Tm allows domain formation at a wider range of 

temperature below Tm compared to BSM-membranes. Hence ESM was adopted instead of BSM 

for ternary mixture. The reason for choosing 32% cholesterol was because it falls in the liquid-
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liquid coexisting region at room temperature, and the Tm at this cholesterol content is of easy 

reach with our setup.  
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CHAPTER FOUR: 

 TRANSMEMBRANE DOMAIN OF THE INFLUENZA A PROTEIN 

 

4.1: Brief introduction of M2TM 

“Flu” is one of the oldest human companions. It is a viral infectious disease that infect, 

mostly, upper respiratory tract. In humans, flu is caused by influenza A virus. Viral envelope 

carrying influenza A virus enters the respiratory airway and binds to cellular membranes via 

viral peptide. Of course, a healthy cell does not suddenly become sick when the viral envelope 

gets inside host’s cytoplasmic space, it is actually the release of viral code inside the viral 

envelope into the cytoplasmic space that infects the host cell. This viral envelope breakdown is 

heavily dependent on the M2 protein [30]. M2 functions to acidify viral interior to assist in 

envelope breakage [30]. Structurally, the transmembrane domain of M2 (M2TM) forms a tetra-

oligomeric channel that allows proton transport into the viral envelope. The way protons are 

conducted is mediated by histidine residue (H37), which is located in the transmembrane 

region of M2TM [31]. Meanwhile, tryptophan residue (W41) functions as the channel gate for 

proton transport and is located close to the interior leaflet of viral envelope [31].  

 

There exists enormous amount of structural studies on M2TM, but not so much on M2TM 

effects on critical-like fluctuations of lipid membranes. Critical-like fluctuations represent a 

special ability of cell membranes to modify their lipid composition at certain temperatures to 
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accommodate for important bioprocesses [32]. So it is significant to study how M2TM may 

change this innate ability of lipid membranes. M2TM peptide was incorporated into GUVs in 

this study. We find that inclusion of M2TM increases Tm. Not only that, smaller vesicle budding 

was also observed in M2TM-treated vesicles. 

 

4.2: M2TM membrane addition approach 

Two approaches were used for mixing M2TM into lipid bilayers. In the first approach, 

M2TM was mixed with pure lipid mixtures with desired mole ratios prior to being 

electroformed. The M2TM-incorporated GUVs of post-electroformation was then pipetted to 

silicone gel well for observation. The second approach was done by suspending M2TM in GUV 

buffer with 1% (v/v) DMSO. Equal volume of lipid-only GUVs and M2TM solution were pipetted 

into a micro-centrifuge tube (1.5 ml) and allowed to incubate for 20 minutes. After incubation, 

the mixture was pipetted into a silicone gel well for observation. We had also tested mixture of 

GUVs and DMSO as a control. For the second approach, DMSO concentration is 0.5% (v/v) and 

M2TM concentration is 2.3 µM.  

 

4.3: Tm study for GUVs with M2TM 

Phase miscibility transition temperature Tm for GUVs composed of (3:2) DOPC:ESM + 

32% Chol was explored as a function of M2TM content. Figure 19 shows GUV miscibility 

transition temperature when there is 4mol%M2TM. The estimated Tm is 37 °C, which is ~5°C 

larger than that of GUVs without M2TM. We also performed Tm study for 1% to 8% M2TM, as 

shown in Figure 20 and Table 1. Tm increases steadily by 1-2 °C per 1% M2TM from 0% (32.7°C) 
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to 8% (48.5°C). This shows M2TM peptide indeed affects the mixing capability of lipids, i.e., 

more energy is needed to mix as M2TM % increases. Below Tm, GUVs of all M2TM % display Lo–

Ld phase separation. Phase separation becomes more prominent as the temperature drops 

away from Tm. 

 

  

Figure 19: Above shows temperature ramping of fluorescent GUVs of (3:2) DOPC:ESM +32% 
Chol +4%M2TM; A) 23.0°C; (B) 37.0°C-critical fluctuations; and (C) >40.5°C-one Ld phase. 
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Figure 20: Above shows critical-like fluctuations of fluorescent GUVs of (3:2) DOPC:ESM +32% 
Chol +various %M2TM. The mole fraction of M2TM is (A) 1%(33.2°C); (B) 2%(34.5°C); (C) 
4%(37.0°C); (D) 5%(39.7°C); (E) 7%(45.2°C); and (F) 8%(48.5°C).  
 

Table 1: Summary of Tm of various M2TM % in 3:2 DOPC/ESM + 32%chol GUVs. Tm increases as 
M2TM % increases. 
 

3:2 DOPC/ESM + 32%chol + M2TM %  Tm 

1 33.2°C 

2 34.5°C 

4 37.0°C 

5 39.7°C 

7 45.2°C 

8 48.5°C 

 

The Tm increase in M2TM-incorporated vesicles is probably due to the partition of M2TM into Ld 

phase. This affinity is shown through our AFM study where we observed individual M2TM 

oligomers localized in the Ld phase [12]. Many factors could contribute to the phase dependent 

partitioning of M2TM. One possible explanation is that the length of M2TM is more compatible 

with the Ld phase than with the Lo phase. M2TM partitioning to the Ld region implicates a large 
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energy barrier between the Lo and Ld phases. This supports data of Tm increase as higher 

thermal energy (temperature) will be needed to cross the phase boundaries.  

 

4.4: Vesicle budding 

A group from University of Illinois has shown formation of smaller vesicles from parent 

GUVs, termed as “budding”, with addition of pore-forming peptide is possible [33]. As has been 

shown by Rossman et al., M2TM is also capable of inducing vesicle budding  [34]. We also 

studied whether M2TM can induce vesicle budding when there is Lo-Ld phase separation. The 

experiment was performed at 23°C for many M2TM concentrations, except for 1% M2TM. For 

1% M2TM, GUV budding was observed at 33.2°C. Take 2% M2TM for example, small vesicles 

are observed to bud from parent GUVs with Lo and Ld phase coexistence (Figure 21). Vesicle 

budding persists for 4%, 5%, 7%, and 8% of M2TM (Figure 21). No budding was observed in 6% 

M2TM. An explanation for the lack of budding at 6% M2TM might just be due to sample 

preparation issue. Some parent GUVs also contain smaller vesicles inside them due to internal 

budding (Figure 21A-B).  
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Figure 21: Above shows vesicle budding for 3:2 DOPC:ESM +32% Chol + various % M2TM at 
23ᵒC; (A) 1% (@33.2ᵒC); (B) 2%; (C) 4%; (D) 5%; (E) 7%; and (F) 8%. For 7%, reverse budding 
were observed as Ld buds off vesicles instead of Lo domains. 

 

To study if cholesterol plays a role in GUV budding, GUVs composed of 3:2 DOPC:ESM with 8% 

M2TM in various (2, 5,10,20) mol % cholesterol were concocted. The immediate observation is 

a third phase known as the gel (or solid) phase in place of the Lo phase (Figure 22).  Gel phase is 

irregularly shaped compare to circular domains of the Lo phase.  Gel phase is only present in 

GUVs containing 2 and 5 mol % of Chol. Budding is observed in all cholesterol mol %. Hence the 

amount of cholesterol plays insignificant role in GUV budding. 
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Figure 22: Above shows GUVs of 3:2 DOPC:ESM + 8% M2TM + various % Chol at 23ᵒC. 
Cholesterol mole fraction is (A) 2% and (B) 5%. Low cholesterol content changed Lo domains to 
irregular shaped gel structure. Vesicle budding occurs at all % Chol (data are not presented).  
 

M2TM study so far has been examined under peptide exposure with pre-electroformed lipid 

mixture. To test if M2TM can induce vesicle budding for lipid-only GUVs, we added M2TM 

dissolved in 1% DMSO to post-electroformed GUVs at 27°C. Addition of 1% DMSO only led to 

critical-like fluctuations at a lower temperature (27°C) of GUVs (Figure 23B). No budding is 

observed. Hence DMSO alone is incapable of inducing membrane budding. We noticed 

significantly more GUVs experiencing budding if DMSO + M2TM are added to lipid-only GUVs 

(Figure 23C). Also, the buddings are more distinct compared to Tm study of M2TM.  
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Figure 23: Above shows effect of DMSO and M2TM addition to lipid-only GUVs of (3:2) 
DOPC:ESM +32% Chol; (A) pure lipid; (B) 1% DMSO (27°C); and (C) 1% DMSO + 2.3 µM M2TM 
(budding). 
 

M2TM has an intrinsic ability to form tetramer. This tetramer when planted into lipid 

membranes causes vesicle shape restructuring. The structure of tetramic M2TM is conical with 

tilt about 22-32° with respect to the bilayer normal [12]. The conical tetramer structure will 

have narrowed N-terminal and widened C-terminal. Some has reported tilt angle as large as 30-

38° [35]. The tilt angle variation is believed to be caused by the length mismatch of hydrophobic 

thickness of different membranes and M2TM height. Within the hydrophobic region of lipid 

membranes, the insertion of M2TM will cause tight packing to lipid around its C-terminal 

compared to its N-terminal. This involuntarily shoving of lipids brings about nonsymmetrical 

lipid leaflet arrangement that will induce negative membrane curvature. The symmetrical 
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insertion of M2TM (Tm study) is why we don’t see assortment of budding in M2TM-

incorporated vesicles prior to electroformation. This is because the conical shape M2TM 

tetramer paired with symmetrical orientation will cancel out any negative curvature. On the 

contrary, we see a lot of budding when we introduced M2TM to lipid-only GUVs post-

electroformation (Figure 23C). These budding can only mean that M2TM preferentially insert 

itself in one orientation more than the anti-symmetrical orientation, if added post-

electroformation. One disagreement with Rossman et al. is the effect of cholesterol on vesicle 

budding. They reported that low cholesterol+M2 content induces budding and no budding is 

observed at high cholesterol+M2 content [4]. Contrary, our results tell us that cholesterol plays 

no role in GUV budding.  

 

Also, our AFM data (not presented) showed that M2TM only affected lipid lateral packing and 

not the height of each phase. M2TM in the Ld phase increases the stiffness of that phase. The 

increase in Ld phase rigidity modifies line tension at domain edges. Since vesicle budding is 

related to domain line tension and the bending energy of budding caps, our AFM data might 

explain GUV budding.  
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CHAPTER FIVE:  

POLYGLUTAMINE AGGREGATES 

 

5.1: Brief introduction of polyglutamine  

Huntingtin (htt) is the protein that is notoriously known to cause Huntington’s disease 

(HD) in human [36-42]. The N-terminus of htt contains a stretch of glutamine amino acids (i.e., 

polyglutamine). The number of the consecutive glutamine amino acids was found to correlate 

with the onset age of HD, as well as the severity of the disease. Generally speaking, the longer 

the polyglutamine (polyQ) stretch is, the earlier the disease manifests itself. Moreover, when 

the number of glutamine is < 35, no risk of HD has been found. It seems that there is a 

pathologic threshold of the polyQ length [43],  below which the protein is harmless and above 

which there is a high risk of developing the progressive neurodegenerative HD.  

 

In HD affected patients, large aggregates of htt, the so-called inclusion bodies, have been found 

in various areas of dead neurons. Many biophysical and biochemical studies have shown that 

depending on its length, the polyQ stretch has an intrinsic tendency to aggregate into oligomers 

and fibrils. The similarity between polyQ aggregates and the inclusion bodies, as well as the 

cytotoxicity of polyQ aggregates to cultured neutrons and animal models, has led researchers 

to propose that polyQ is the main culprit in HD.  
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Despite intense research, the mechanism of polyQ mediated cellular toxicity is unknown. 

Several membranous targets by polyQ aggregates have been proposed, including nucleus 

membrane, mitochondrial inner and outer membranes, and synaptic plasma membrane. We 

are interested in  how polyQ aggregates impair lipid membrane structure and morphology [13]. 

This thesis work focuses on the effect of aggregates formed by a polyQ peptide (KK-Q35-KK, 35 

glutamine flanked by two lysine at each end) on GUVs. GUV disruption was observed in all 

vesicles with addition of polyQ, as predicted. The insight of polyQ’s dynamic with lipid 

membranes will be of significant application to therapeutic strategies.  

 

5.2: PolyQ membrane addition approach 

For polyQ study, two GUV compositions were used: pure DOPC and DOPC/ESM/Chol 

mixture. In both cases, polyQ aggregates were prepared by incubation in 10 mM HEPES pH 7.0 

at room temperature. Aggregate formation was monitored by AFM and Fourier transform 

infrared spectroscopy measurements (data not shown). After confirming aggregate formation, 

polyQ aggregates were suspended in GUV buffer and mixed with lipid GUVs at equal volume. In 

other words, the polyQ solution was pipetted into GUV solution on a glass slide for imaging. 

Immediately after polyQ addition, fluorescence images were taken and GUVs showed no 

evidence of membrane disruption. For control experiment, GUV was mixed with buffer-only 

solution and imaged. All images of vesicle disruption obtained in this study were using 15 µM 

polyQ peptide and taken 10 minutes after addition. 
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5.3: PolyQ induces vesicle disruption 

PolyQ effect on lipid membranes was first studied on single lipid GUVs made of DOPC 

(Figure 24A). Upon adding equal volume of 15 µM polyQ aliquot (incubated for five days at 4°C) 

to intact homogenous GUVs, no vesicle breakage was observed instantaneously. Peptide 

aliquot that was incubated for five days contains many oligomeric and fibrillar aggregates, 

according to our AFM data [13]. However, based on the observation that very small number of 

GUV breakage can be caused by directly pipetting polyQ aliquot against the GUV aliquot on a 

glass cover slip, we used a modified approach where GUV + polyQ aliquots were mixed in a 

microcentrifuge tube and let alone to incubate for 10 minutes. This approach significantly 

reduces artifacts associated with the pipetting procedure. Using the modified approach, we 

observed that GUV breakage left a residual on the glass slide that is detectable through 

fluorescence microscopy. The residual appears to be non-circular in shape and is generally 

larger in size compared to its former intact GUVs (Figure 24A:1-3).  

 

 

Figure 24: Above shows fluorescent GUVs vesicle breakage upon addition of polyQ (15µM) to: 
(A) Pure DOPC (before polyQ); A1-A3 (polyQ added) and; (B) 3:2 DOPC:ESM+20% Chol (before 
polyQ); B1-B3 (polyQ added). Breakage occurred about 10 minutes after polyQ aliquot added. 
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Ternary lipid mixture of 3:2 DOPC:ESM+20%Chol was investigated to see how polyQ affects 

phase-separated GUVs (Figure 24B). Similar shape and size vesicle breakage was observed 10 

minutes after polyQ addition. But interestingly, the residuals from phase-separated GUVs kept 

their phase separation behavior even after vesicle breakage (Figure 24B:1-3).  

 

The toxic severity of polyQ to lipid membrane draws from its own polyQ length repeat 

(extension) and aggregation [13, 36]. PolyQ repeats start at the N17-terminal of htt protein. It is 

headed by an N17-terminal (mainly α-helix) and is flanked by polyproline at C-terminal 

downstream [41, 42]. According to molecular dynamic simulations by Nagarajan et al, the 

combination of N17 and polyproline is key to how deep polyQ penetrates the membrane [44]. 

Their work also shows membrane thinning simulation data. Membrane thinning occurs in 

regions that contain polyQ [44]. It is safe to say then that membrane thinning can and will result 

in membrane disruption. Another group shares similar result with Nagarajan’s group. N17-

terminal of htt proves to be important not only to provide site for polyQ repeats, but also vital 

for polyQ–lipid membrane binding [45]. They presented the inhibition of N17-terminal ability to 

bind to lipid membrane by altering N17-terminal [45]. Kim’s group reported that polyQ repeats 

can adopt α-helix, coil or extended loop structure [41]. They also proposed that a long (>35Q) 

polyQ extension will encourage the aggregation of other peptide or another extended-polyQ 

structure [41]. This aggregation will have pathogenic consequences on lipid membrane such as 

membrane disruption. Oligomer aggregate of about 6-7 monomers was reported to disrupt 

solid supported lipid bilayer through a two-step process, consistent with GUV result in this 

thesis work [42].  

file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_13
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_36
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_41
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_42
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_44
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_44
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_45
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_45
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_41
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_41
file:///C:/Users/Joshua/Desktop/RevisedThesis%202-JP.docx%23_ENREF_42


  

47 
 

On a different note, the presence of cholesterol is shown to decrease polyQ binding to lipid 

membranes [46]. Cholesterol stiffens lipid membrane and thus reduces efficiency of polyQ to 

penetrate through. Contrary, our GUV data shows disrupted membrane vesicles for both pure 

DOPC and DOPC/ESM/Chol. This discrepancy may be due to different lipid species used and 

techniques employed. However, it does compel a future study of different cholesterol 

concentration vesicles with polyQ. One can look at the percentage of vesicle breakage and time 

it takes for the breakage to occur. Lastly, Chaibva et al claimed that polyQ preferentially 

accumulate around curved lipid membranes [47]. Chaibva finding is not covered in this work 

and will requires further study. 
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CHAPTER SIX:  

POLYPHENOL DRUG MOLECULES 

 

6.1: Brief introduction of tamoxifen, genistein, and verapamil 

Of the plethora anticancer drugs used to treat breast cancer, tamoxifen, an amphiphilic 

molecule, has been well accepted for its use of prevention and treatment [48]. The way 

tamoxifen inhibit breast cancer is by competitively bind to estrogen-receptor binding sites [49]. 

By binding to estrogen-receptor binding sites, tamoxifen disrupts the cancer cell replication 

cycle. On the flip side, tamoxifen has also been shown to inhibit estrogen-receptor-negative 

breast cancer cells, cause liver toxicity, and antagonize protein kinase C [50-52]. Protein kinase 

C is key to cellular growth regulation and natural apoptotic process [53, 54]. To date, there exist 

numerous studies on tamoxifen-membrane interactions using fluorescence anisotropy, 

differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. 

From these studies, physical and chemical properties of lipid membrane were shown to be 

affected by tamoxifen [55-59]. Therefore, it is deserving to know how Tm changes with 

tamoxifen concentration in lipid model membrane. Tamoxifen-premixed GUVs generally shows 

increased Tm with tamoxifen concentration, in this work.  

 

Unlike tamoxifen, genistein and verapamil studies were ephemeral. Genistein is an isoflavones 

that function as estrogen receptor [60, 61]. Akin to tamoxifen, genistein can also inhibit various 
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cancer cell including breast cancer [62]. Aside from that, genistein is able to avert osteoporosis 

[63]. Verapamil is an antihypertensive drug that blocks the transport of calcium through 

transmembrane calcium channels [64]. It is commonly used to treat angina, arrhythmia, 

hypertension, and hemodynamics. Verapamil’s structure is somewhat linear with a ring flanking 

at both ends of the carbon chain. Figure 25 shows chemical structure for tamoxifen, genistein 

and verapamil. On a whole, study of drug molecule affecting lipid membrane permeability is 

crucial because membrane poses as the first line of defense that any molecules will have to 

cross to get inside the cell. Though only two concentrations of genistein were studied, 

genistein-incorporated GUVs displays increased Tm compared to genistein-absent GUVs. As for 

verapamil, data shows no Tm change between verapamil-incorporated GUVs and verapamil-

absent GUVs. 

 

Figure 25: Chemical structure of: a) tamoxifen; b) genistein; and c) verapamil.  
Image source: http://sigmaaldrich.com  
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6.2: Tm study of polyphenol drug molecules 

Tm study of drug molecules interacting with lipid membranes is the final work of this 

thesis. Tamoxifen was added to (3:2) DOPC:ESM +32% Chol lipid mixture before GUV formation 

using the electroformation method. We found that 4% tamoxifen increases GUVs Tm by about 

3°C compared to lipid-only GUVs (Figure 26). Overall, as % tamoxifen increases, Tm increases by 

about 1°C for 1% tamoxifen increment. A summary of Tm for 2, 4, 5, and 6% tamoxifen is shown 

in Figure 27 and Table 2.  

 

 

Figure 26: Above shows temperature ramping of fluorescent GUVs of (3:2) DOPC:ESM +32% 
Chol + 4% tamoxifen, (A) 27.0°C; (B) 36.5°C-critical-like fluctuations; and (C) >37.4°C-one Ld 
phase. One may note that critical-like fluctuations shown here resemble microdomains. 
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Figure 27: Above shows critical-like fluctuations of fluorescent GUVs of (3:2) DOPC:ESM +32% 
Chol + various % tamoxifen. The mole fraction of tamoxifen is (A) 2% (33.9°C); (B) 4% (36.5°C); 
(C) 5% (36.7°C); and (D) 6% (37.7°C). For 8% tamoxifen, due to the lack of critical-like fluctuation 
images, Tm (@37.9°C) was taken as the average of two temperatures, one from homogenous Ld 
phase GUVs and the other phase-separated GUVs. 
 

Table 2: Summary of Tm of various tamoxifen % in 3:2 DOPC/ESM + 32%chol GUVs. Tm increases 
as tamoxifen % increases. 
 

3:2 DOPC/ESM + 32%chol + 
tamoxifen %  

Tm 

2 33.9°C 

4 36.5°C 

5 36.7°C 

6 37.7°C 

8 37.9°C 

 

Tamoxifen is believed to have lipid membrane rigidifying ability, similar to many flavonoids. We 

have reported an increased lipid membrane hydrocarbon chain thickness about 2.8 Å with 

tamoxifen’s presence [65]. This is because tamoxifen locates itself within lipid membrane 

hydrophobic region [65]. Based on the observation that tamoxifen increases GUV Tm, it is likely 

that tamoxifen preferentially partitions into one phase versus the other (similar to M2TM).   
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Only 4 and 6% genistein were studied. Figure 28 shows critical-like fluctuations at 33.1°C for 6% 

genistein. Due to the lack of images with critical-like fluctuations for 4% genistein, Tm was taken 

as the average of two temperatures: a high temperature corresponding to homogenous Ld 

phase GUVs and a low temperature corresponding to phase-separated GUVs. Tm was taken to 

be 33.5°C for 4% genistein, which is similar to 6%. Despite an increase in Tm with genistein 

addition (~2°C) compared to lipid-only GUVs, result is inconclusive due to lack of studies on 

other genistein %.  

 

 

Figure 28: Above shows temperature ramping of fluorescent GUVs of (3:2) DOPC:ESM +32% 
Chol+6% genestein; (A) 27°C; (B) 33.1°C-critical-like fluctuations. and (C) >34.8°C-one Ld phase. 
 

Though genistein Tm study is inconclusive, it is predicted to follow the trend of tamoxifen as 

genistein has similar properties to tamoxifen; genistein binds within hydrophobic region close 
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to the polar headgroup of lipid membranes and is capable of stiffening lipid membranes [9, 66]. 

Another group reported the same genistein-membrane behavior. They said genistein decreased 

motional freedom of membrane polar headgroups, resulting in a more ordered membrane 

structure [67]. Additionally, genistein binding is also regulated by pH of vesicles’ environment 

[68].  

 

As for verapamil, 2, 4, and 8% verapamil were concocted into GUVs. Figure 29B shows critical-

like fluctuations at 31.3°C for (3:2) DOPC:ESM + 32%chol + 4% verapamil. GUVs develop into 

homogenous Ld phase above 33.7°C (Figure 29C). For 2% verapamil, Tm (@31.3°C) was taken in 

the same way as 4% genistein for the same reason. Similarly, 8% verapamil showed Tm at 31.4°C 

(Figure 30). A summary of verapamil Tm is given in Table 3. Comparing this result with that of 

lipid-only GUVs of the same lipid compositions, verapamil appears to have no effect on Tm. 

Based on the augmented Tm in the presence of M2TM and tamoxifen, it is possible that 

verapamil does not have a strong preference for Lo or Ld phases. Meier et al. reported that 

verapamil mostly exists in a charged state at pH7.4 [69]. They also mentioned that verapamil 

folds both of its aromatic ring and insert itself in the hydrophobic region of lipid membranes 

while leaving the charged part of the molecule close to lipid-water interface [69]. Such a picture 

may be relevant to unbiased partitioning in phase coexisting lipid bilayers. 
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Figure 29: Above shows temperature ramping of fluorescent GUVs of (3:2) DOPC:ESM +32% 
Chol+4% verapamil; (A) 27°C; (B) 31.3°C-critical-like fluctuations and (C) >33.7°C-one Ld phase. 
 

 

Figure 30: Above shows fluorescent GUV (3:2) DOPC:ESM+32% Chol critical-like fluctuations at 
various verapamil concentrations: (A) 4% (31.3°C) and (B) 8% (31.4°C). For 2% verapamil, due to 
the lack of critical-like fluctuations image, Tm (@31.3°C) was taken as the average of two 
temperatures, one from homogenous Ld phase GUVs and one from phase-separated GUVs 
 

Table 3: Summary of Tm of various verapamil % in 3:2 DOPC/ESM + 32%chol GUVs. Tm does not 
change as verapamil % increases. 
 

3:2 DOPC/ESM + 32%chol + verapamil %  Tm 

2 31.3°C 

4 31.3°C 

8 31.4°C 
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 CHAPTER SEVEN:  

CONCLUSION 

 

This thesis work probes various peptide/drug molecules interacting with lipid model 

membranes, causing Tm change, vesicle budding, and membrane disruption. With the intention 

to study these physical phenomena, ternary lipid model GUVs of (3:2) DOPC:ESM+32% Chol was 

adopted in majority parts of this thesis. The use of fluorescent microscopy and 

electroformation method are also vital to the study of this thesis. The main conclusions of each 

studies are summarized as follows: 

 The increase presence of ESM and Chol in GUVs produces larger Lo domains for 

temperature below Tm;  GUV’s Tm is also modified as ESM and Chol increase.  

 M2TM peptide in GUVs increase Tm; vesicle buddings is more prevalent when M2TM is 

added after GUVs are electroformed compared to electroformed M2TM-

incorporateded GUVs; vesicle budding is caused by negative curvature induced by 

M2TM insertion into lipid membranes. 

 Addition of polyQ (>35Q) aggregates to homogenous and phase-separated GUVs 

resulted in membrane rupture. 

 Tamoxifen in GUVs increases Tm; genistein in GUVs increases Tm about 2ᵒC (33.1ᵒC) 

from pure ternary lipid model GUVs (Tm = 31.7ᵒC); verapamil in GUVs has no effect on 

Tm.  
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With this, ends the journey of exploring a small piece of science on lipid membranes. The hope 

of this thesis work is to provide supporting information to any research that helps in 

therapeutic strategies, for the betterment of life.  
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APPENDIX A 

 
Electroformation Procedure  

Materials: 200mM Sucrose solution, 200mM Glucose solution, 0.48 mg/ml DPPE-rhodamine in 

chloroform, 2mg/ml DOPC in chloroform, 2mg/ml ESM in chloroform, 2mg/ml Chol in 

chloroform, propanol, ITO (Indium Tin Oxide) slides, O-rings, paper clips, conductor-coated 

alligator clips wire, syringes, vacuum pump, pastuer pipet, VWR heating system with aluminum 

block 

 

Preparation:  

1) Clean ITO slides and O-ring with propanol. After dried, wipe ITO slides (both sides) 

and Pastuer pipette with lens paper. Set aside. 

2) Clean syringes with chloroform. Set aside. 

3) Warm up sucrose, glucose, dye, lipid to room temperature. Set aside. 

4) Heat and stabilize cleaned ITO slides, O-ring, Pasteur pipette, and aluminum block to 

about 55°C. We use hot plate. 

 

Method: 

1) Syringe 50µl of 2mg/ml DOPC, 30µl of 2mg/ml ESM, 19µl of 2mg/ml Chol, 2µl of 

0.48mg/ml DPPE-rhodamine, and 99µl of chloroform into a glass test tube.  
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2) Vortex solution by Fisher fixed speed vortex mixer for 1 minute. 

3) Syringe 50µl of mixed solution onto conductive side and top part of an ITO slide. 

REMEMBER: ITO slides should be about 55°C (refer Preparation step 4). 

4) Gently roll solution over the top half on ITO slide until a thin layer of lipid was 

formed using the curved body of Pasteur pipette. Another 50µl of mixed solution 

syringe onto the same spot on the same ITO slide. “Roll” action performed to get a 

thin layer of lipid.  

5) Repeat Method step 3 and 4 for other ITO slides. 4 slides corresponded to 2 samples 

in aluminum block.  

6) Vacuum ITO slides for about 45-60 minutes using vacuum pump. 

7) Heat ITO slides back to about 55°C. 

8) Place O-ring on top of the lipid film formed on the ITO slide. Place another ITO slide 

with film layer touching the O-ring, like a sandwich. Press the “O-ring-ITO sandwich” 

firmly without causing O-ring to move to ensure O-ring sticks to one of the ITO 

slides. Slowly peel off one ITO slide, O-ring will stick to one of the ITO slide. 

9) Once O-ring joined with one ITO slide, place identical O-ring at the bottom half of 

the joined ITO slide. Then pipet 500µl of 0.2M Sucrose into the O-ring with lipid film, 

and immediately but carefully cover with another ITO slide like the sandwich in 

Method step 8.  

10) Clip the “sandwich” at the bottom half of ITO slides-O-ring sandwich using paper 

clip.  

11) Soak the leakage away with Kim wipes if there are leakage.  
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12) Slide the sandwich into one of the slot in the aluminum block.  

13) Hook alligator clip wires from a function generator to the slides.  

14) Set function generator parameter to use sine wave, 2Vpp and 10Hz.These 

parameters can be changed to experiment on the size of GUVs. Apply voltage for 2 

hours under these setting when aluminum block hits 60°C. Shut off function 

generator after 2 hours. Allow aluminum block to cool down gradually from 60 to 

22°C over the span of 10 hours. Temperature is controlled by Digi-Sense 

temperature controller.  

 

Harvesting: 

1) Remove alligator clips from ITO slides and unclip the O-ring-ITO sandwich.  

2) Carefully pry open one side of ITO slide and then pipet out the GUV solution in the 

O-ring into 2ml of 200mM Glucose. Gently homogenize the GUV solution in glucose.  

3) Clean ITO slides and O-rings with propanol and store in pure water. 
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APPENDIX B 
 
Programming Digi-Sense Temperature Controller 

 

To program Digi-Sense temperature controller: 

i) Turn power on, and you will see 2 rows of number. The red number 

represent current temperature the probe is reading. The yellow number 

below it represent set/desired temperature. 

ii) To change desired temperature to a different value, simply press the “up 

arrow” or “down arrow” button. The “infinity” button acts like an exit 

button. The “green” button brings you to the menu. I never use the “EZ” 

button.  

iii) Press and hold “green” button for 3 seconds and you will see the screen 

below: 

 

There are 4 programmable programs, denoted by P1 through P4. To see 

them, use “up/down arrow”.  NOTE: P1 is already programmed for GUV 

synthesis from 60-22 °C. So select P2 or others to start programming.  
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iv) To select P2, press the “green” button. The scree will display  

 

Number 11 is basically step 1 for profile 2. This number 11 will go up to 

20, which allow 10 steps for programming.  If you choose P3, you will see 

21 which corresponding to step 1 of profile 3.  

v) At number 11, press “green” button once. You will see  

 

t1 represent time. You can press “up/down arrow” to look at other type 

of heating mode. At t1 screen, press “green” button. This allows you to 

set your desired temperature and duration of heating.  
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You set by using “up/down arrow” then confirm it by pressing the 

“green” button once. 

vi) After this, the screen below will appear 

   

Make sure Ent 1 and 2 are both “off”.  Use “up/down arrow”. 

You will then be directed to this page again. Up to this point, you have 

successfully program temperature and duration of heating in step 1. 

 

vii) Press “infinity” button to exit previous screen and go back to  

 

   Now use 12 to program step 2.  



  

72 
 

 

   Repeat procedure (v) to (vii) for subsequent steps. Once you have 

programmed     all the steps, press “infinity” button few times until you get 

to the home screen     with 2 numbers 

 

 

To start the programmed program: 

i) Turn power on. 

ii) Press “green” button until you see screen below. You might see 11 instead of 1, 

use “up/down arrow” to adjust. 
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  This is step 1 in profile 1. To get to step 1 in profile 2, use “up/down arrow” 

button to go   to 11. 

 

  Then press “green” button to get to the screen below 

 

  Use “up/down arrow” button to change the screen to “step” as below 

 

  Then click the “green” button. This runs the program. And you will see this 

screen 
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The number below changes because it is ramping up to set value. The 

“mountain” icon to the right of the bottom number shows that the program is 

running. 

iii) To end the profile, press “green” button until you see screen below 

, if you are running profile 1 

, if you are running profile 2 

  Press “green” button and you will see screen below 
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  Use “up/down arrow” button to get to “End” like screen below 

 

  Press “green” button and this will end the temperature ramping. 
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