Welcome to Faculty Voices!

Kevin Yee, ATLE Director

Faculty Voices is a publication that provides instructional faculty at USF with a venue for sharing best practices and disseminating the exciting discoveries we are making in teaching and learning. Think of it as a newsletter “by faculty, for faculty,” with content both contributed and solicited to bring you a wider picture of the USF teaching landscape.

As the incoming director of the Academy for Teaching and Learning Excellence (ATLE), I would like to extend my own personal greeting and offer any assistance I can lend you in your instructional efforts. ATLE is a confidential resource you can use to aid you in your teaching, with opportunities for scheduled programming and workshops as well as just-in-time assistance for consultations on pedagogy and course design, classroom observations, improving student evaluations, or help with technology that you might be considering using in your teaching. We offer our services to all instructional faculty at USF.

Implementing Proven Strategies in an Engineering Classroom

Autar Kaw, Professor

During 25 years of teaching in the Department of Mechanical Engineering at University of South Florida, a junior-level course in Computational Methods has been my staple course to teach. Here students learn approximate methods of evaluating mathematical procedures (such as integrals, derivatives, simultaneous linear equations, and nonlinear equations) required in solving many engineering and science problems. Why use approximate methods—first, the exact solution may not be available, and even if it is, it may take a long time to find it. Students take this course after having taken their core mathematics courses required of all engineering majors. The class enrollment varies anywhere from 50 to 90 students.

Over the years, I have closely followed articles and books that are based on the scholarship of teaching and learning. The evidence-based nature and,
Faculty Voices

I use clickers in class as they allow me to assess student learning in real-time. Since spring 2012, I have become a big fan of using them for formative assessment. Grading homework assignments for a class of 90 students is challenging, but with the help of clickers, I can get immediate feedback and adjust my teaching strategy accordingly.

Vol. 1, No. 1 • Spring 2013

Faculty Voices

I require students to experience numerical experiments, which has been found to improve student performance. What's New at the Library?

Grading homework assignments for a class of 90 students with an assigned TA who is appointed for only 10 hours/week can be daunting. With learning management systems like Blackboard and Canvas, I have developed online homework quizzes that are graded automatically. Moreover, the algorithmic nature of the quizzes encourages repeated attempts for a higher grade. The quizzes are designed to give immediate feedback, and create effective and efficient time-on-task opportunities.

Since spring 2012, I have become a big fan of the online study hall discussion tool called Piazza. The interface is easy for instructors and students to pick up. The discussion takes place 24/7 and both students and instructors can answer questions posed on the board. Many of these questions have encouraged me to respond in the form of textual responses, blogs, pencasts made using a Livescribe pen, and short YouTube videos made through iPad apps such as ShowMe. Students can choose their preferred form of media to understand the subject matter.

If you want to know more about my teaching experiences, I will be glad to sit down for a chat. Just drop me an email at kaw@usf.edu or call me at 813-974-5626.

Author Kaw is a Professor of mechanical engineering and was recently named a Carnegie Foundation/CASE U.S. Professor of the Year—the nation's highest honor in undergraduate teaching. His expertise includes: Engineering Education Research Methods, Mechanics of Composite Materials, Elasticity, Fracture, Thermal Stress, and On-line Course Development.

Nancy Cunningham, University Librarian

Smart Lab and Extended Learning Commons

Previously the home to over 38,000 linear feet of bound journals and media collections, the 2nd floor of the library has been transformed to house the new SMART Lab and extended Learning Commons. The SMART Lab - http://library.usf.edu/smart-lab/ - is an innovative teaching and learning space representing a new way undergraduates learn and are taught mathematics. The Lab contains over 320 workstations and expanded tutoring spaces to support a wide range of STEM courses. By moving all print journals to the library's basement, the Learning Commons on the 2nd floor has expanded with 300 additional seats including 13 hi-tech "collaboration stations" allowing students to work together through the use of large display screens and shared audio.

Print journals, previously located the 2nd floor, will now be found on 62,000 linear feet of new compact shelving on the library's basement floor.

Library Awarded Student Tech Fee Funds

Thanks to two Student Tech Fee grants awarded this year, the library will not only continue to check out laptops to students, but also add iPads and upgraded study rooms! Many USF students have limited financial resources, do not own their own laptops, and rely on the Library for laptops when all other computing stations are occupied. The first Student Tech Fee grant provided the Library with the ability to add iPads for student checkout and replace 45 aging laptops with 60 newer models. The second Tech Fee grant provided for the installation of digital display technology in 10 study rooms to maximize productivity when students work in groups.

What’s New at the Library?

More resources, amazing spaces, new services, and technology for you and your students.

Smart Lab and Extended Learning Commons

Vol. 1, No. 1 • Spring 2013

Nancy Cunningham, University Librarian

Smart Lab and Extended Learning Commons

Previously the home to over 38,000 linear feet of bound journals and media collections, the 2nd floor of the library has been transformed to house the new SMART Lab and extended Learning Commons. The SMART Lab - http://library.usf.edu/smart-lab/ - is an innovative teaching and learning space representing a new way undergraduates learn and are taught mathematics. The Lab contains over 320 workstations and expanded tutoring spaces to support a wide range of STEM courses. By moving all print journals to the library's basement, the Learning Commons on the 2nd floor has expanded with 300 additional seats including 13 hi-tech "collaboration stations" allowing students to work together through the use of large display screens and shared audio.

Print journals, previously located the 2nd floor, will now be found on 62,000 linear feet of new compact shelving on the library's basement floor.

Library Awarded Student Tech Fee Funds

Thanks to two Student Tech Fee grants awarded this year, the library will not only continue to check out laptops to students, but also add iPads and upgraded study rooms! Many USF students have limited financial resources, do not own their own laptops, and rely on the Library for laptops when all other computing stations are occupied. The first Student Tech Fee grant provided the Library with the ability to add iPads for student checkout and replace 45 aging laptops with 60 newer models. The second Tech Fee grant provided for the installation of digital display technology in 10 study rooms to maximize productivity when students work in groups.

What’s New at the Library?

More resources, amazing spaces, new services, and technology for you and your students.

Smart Lab and Extended Learning Commons

Vol. 1, No. 1 • Spring 2013

Nancy Cunningham, University Librarian

Smart Lab and Extended Learning Commons

Previously the home to over 38,000 linear feet of bound journals and media collections, the 2nd floor of the library has been transformed to house the new SMART Lab and extended Learning Commons. The SMART Lab - http://library.usf.edu/smart-lab/ - is an innovative teaching and learning space representing a new way undergraduates learn and are taught mathematics. The Lab contains over 320 workstations and expanded tutoring spaces to support a wide range of STEM courses. By moving all print journals to the library's basement, the Learning Commons on the 2nd floor has expanded with 300 additional seats including 13 hi-tech "collaboration stations" allowing students to work together through the use of large display screens and shared audio.

Print journals, previously located the 2nd floor, will now be found on 62,000 linear feet of new compact shelving on the library's basement floor.

Library Awarded Student Tech Fee Funds

Thanks to two Student Tech Fee grants awarded this year, the library will not only continue to check out laptops to students, but also add iPads and upgraded study rooms! Many USF students have limited financial resources, do not own their own laptops, and rely on the Library for laptops when all other computing stations are occupied. The first Student Tech Fee grant provided the Library with the ability to add iPads for student checkout and replace 45 aging laptops with 60 newer models. The second Tech Fee grant provided for the installation of digital display technology in 10 study rooms to maximize productivity when students work in groups.
A SMART Approach to Helping Students Succeed

Amber Bieske, Visiting Instructional Specialist

Whenever I meet someone new, I can always expect certain questions to arise. When I tell people that I am an instructor at the University of South Florida, they always ask the most natural follow-up question: what do you teach? What is even more predictable is their response when I tell them that I teach mathematics: “Oh, I never liked math” or “I am terrible at math.”

Sadly, colleges across the country report that math courses, in particular College Algebra, have unacceptably high failure rates. Some colleges even report failure rates as high as 60%. From 2007 to 2010, the average failure rate for College Algebra here at USF was 55%. The mathematics department addressed these issues by redesigning the College Algebra course from the ground up.

Traditionally, College Algebra meets for two large lecture periods a week. In addition, there are two help sessions a week, where students can receive specific help on their homework from a graduate teaching assistant. The main disadvantage to such an approach is that students are not engaged. They show up to class, take notes, and then use their notes to complete the assignments; students are taking the “back seat” or passive approach to their learning.

The driving force behind the course redesign was to get students to spend more time actively doing mathematics. In the college algebra course redesign, students meet for one large lecture overview. This overview class differs from a typical lecture, as students are presented with overlying concepts followed by one or two examples. Students receive a passive approach to their learning.

During the 2011-2012 academic year, the average failure rate for traditional lecture-based College Algebra classes was 27% while the average failure rate for the redesigned pilot College Algebra class was 18%. The 2012-2013 academic year brings not only College Algebra to the SMART Lab, but Introduction to Mathematics, Precalculus and Finite Mathematics as well. While further studies are needed, it is clear from pilot studies that the SMART Lab is a step in lowering the failure rate for College Algebra at the University of South Florida.

Being in the SMART Lab has allowed me a better opportunity to not only learn, but understand the material and also get a chance to know my wonderful professor. I also know [that] it has helped improve my grade because being required [to spend] 3 hours a week forces me to focus on math. It’s such a helpful way to learn and nothing that I enjoy going to every week.

The library or needing basic library skills can learn online by going through the Research 101 Comprehensive Tutorial (<http://lib.usf.edu/tutorial/interactive/>) and completing the online skills assessment for each module. Research 101 is also offered face to face and students can easily sign up. The workshop series “Beyond the Basics” offers online and face to face workshops on a variety of topics including scholarly publishing and advanced research in the sciences, social sciences, and humanities. Our most popular workshops include Research 101, Impact Factors & Journal Rankings, Scholarly Research & Publishing in the Sciences, and Conducting a Literature Review. For more information visit: <http://www.lib.usf.edu/research-redux/>.

Research Rescue for Students

The new Research Rescue program reaches out to students with online tutorials, classes and face-to-face workshops to help students locate books and articles, learn how to cite and manage resources, and understand the perils of plagiarism.

Students new to the library or needing basic library skills can learn online by going through the Research 101 Comprehensive Tutorial (<http://lib.usf.edu/tutorial/interative/> and completing the online skills assessment for each module. Research 101 is also offered face to face and students can easily sign up. The workshop series “Beyond the Basics” offers online and face to face workshops on a variety of topics including scholarly publishing and advanced research in the sciences, social sciences, and humanities. Our most popular workshops include Research 101, Impact Factors & Journal Rankings, Scholarly Research & Publishing in the Sciences, and Conducting a Literature Review. For more information visit: <http://www.lib.usf.edu/research-redux/>.

There are times when undergraduates are intimidated by the thought of seeking help from a librarian. Three library GURUS (Mayra, Emily, and Jasmine) are trained undergraduate researchers available to help students identify and access resources in all formats. GURUS link undergraduates with librarians and library resources. With the help of an iPad, they roam the library building assisting students in their research and are visible in the Marshall Center and residence halls. For more information on how GURUS can help your students go to: <http://www.lib.usf.edu/research-rescue/guru-program/>.

Scholar Commons

The Library provides USF Scholar Commons to our academic community as both an institutional repository for long-term preservation of scholarly work and as a mechanism to increase visibility of faculty’s scholarship and encourage research collaboration across the campus. Scholar Commons asserts copyright ownership, while allowing faculty members the ability to freely and legally link to research output and satisfies many requirements to publicly disseminate the results of grant generated research. Its platform is optimized for high visibility through Google and other search engines, resulting in work being more frequently cited, more visible, and having greater impact.

In addition, Scholar Commons provides participating faculty a monthly “readership report” with download statistics, giving faculty important impact data for the tenure and promotion process. Please visit <http://scholarcommons.usf.edu/> or contact Rebel Cummings-Sauls (rebelsc@usf.edu or 974-7381) and find out what Scholar Commons can do for you.

Online Digital Exhibits

Over the last year, the Library’s Special and Digital Collections Department has been using Omeka, a free, flexible, and open source web-publishing platform for the display of the library’s historical, scholarly collections. This permanent, online exhibit space presents these collections in the context of wider political, artistic, environmental, historical and economic landscapes. The first exhibit, Selling Sunshine, explores the history of Florida’s citrus industry through various materials held by the Library: post cards, sheet music, rare books, promotional materials, photographs, diaries, and political correspondence. There are currently six exhibits available for viewing, which include: Portraying Courage–Holocaust Survivors in Voice and Image; Five Hundred Years of Discovering Florida; Art of the Poison Pens–A Century of American Political Cartoons; Florida Water–History of Reliance, Abuse, and Restoration; The History of Minitrel; and Selling Sunshine–Florida’s Citrus Industry. For more information visit: <http://exhibits.lib.usf.edu/>.

Nancy Cunningham holds the rank of University Librarian and is the Director of Academic Services at the USF Tampa Library. Her research areas include the assessment of information literacy programming in university libraries, innovative library partnerships to further student success, and the role of academic libraries in teaching media literacy.

Amber Bieske is a Visiting Instructional Specialist in the Department of Mathematics and Statistics. She joined the USF faculty in the fall of 2010. Currently, she is serving as the Course Coordinator for Finite Mathematics.
Once I was given administrative permission to pursue making my course into a Massive Open Online Course (MOOC), I had a few decisions to make. The first was whether to use iTunes University or not, and even though their Course Management software is absolutely ideal for the purpose at hand, it is only ideal for those utilizing an iPad. I had set out to offer a MOOC in order to make education accessible, and while the files would all be hosted in iTunes University, they would have no decipherable organization to those utilizing other than an iPad, so I continued to look elsewhere. I did, however, utilize iAuthor to generate all of my electronic material, so it will be a simple matter to offer my iBook for free to iTunes University at the end of the semester once my lectures are all taped and included.

The second decision I had to make was whether to include pre-recorded micro-lectures of me facing the camera by myself or to record live lectures of my in-class teaching to reach as many students as I did this semester. A MOOC is different than a normal course in a number of key ways. First, a MOOC is not taken for college credit, although places such as Coursera offer a certificate of completion for their courses. Secondly, a MOOC is supposed to be entirely free. No component of a MOOC should have a cost barrier to overcome; this primarily means the “textbook” for the course must be freely available. Copyrighted material may be used as long as there is compliance with fair use guidelines.

I think of offering a MOOC as a relatively new standard for educational practices. I had focused on automatically graded computer distributed testing for years on Blackboard, as well as free electronic materials for my students whenever possible. What offering a MOOC entailed for me was primarily doing the same sort of thing I did for my students, but offering it to anyone who wished to learn. I had already put the material together for my students receiving credit; it took very little effort to offer it to everyone else as well. The importance of offering MOOCs is that the knowledge is made freely available; college credit toward a degree is still very much the realm of brick and mortar campuses such as USF and I don’t see that changing in the foreseeable future.

University or not, and even though their Course Management software is absolutely ideal for the purpose at hand, it is only ideal for those utilizing an iPad. I had set out to offer a MOOC in order to make education accessible, and while the files would all be hosted in iTunes University, they would have no decipherable organization to those utilizing other than an iPad, so I continued to look elsewhere. I did, however, utilize iAuthor to generate all of my electronic material, so it will be a simple matter to offer my iBook for free to iTunes University at the end of the semester once my lectures are all taped and included.

The second decision I had to make was whether to include pre-recorded micro-lectures of me facing the camera by myself or to record live lectures of my in-class performances. I chose to include recordings of live lectures which I hosted on YouTube. Following this, I chose to utilize sharing Google documents as a way to distribute the course material, and I chose to organize all of my course material on a website called "UReddit." Additionally, I utilized the nearly unique discussion boards on Reddit.com to add an interactive element. Finally, I utilized a special interactive version of a Google document spreadsheet to implement multiple choice assessments of the material to complete the technological implementation of crafting a MOOC.

UReddit took care of rostering interested students, so all I had to do was direct interested parties there, and when I began teaching my class on August 28th, 2012 I had nearly 1,000 students from around the world interested in taking the "Arts and Humanities" course I offered to my face-to-face students that semester. The number has continued to grow to around 1,200 as the semester draws to a close. In the Honors College my classes range from 20 to 25 students. It would take me six years of traditional face-to-face teaching to reach as many students as I did this semester.

The New Advanced Visualization Center at USF
John “Tommy” Wieland, Visualization Assistant

Here at the University of South Florida’s (USF) new Advanced Visualization Center (AVC) we help enable the advancement of both research and academics through the application of advanced computing and display technologies. Using the newly fabricated visual display wall, students and faculty are now able to interact with data like never before. The display technology allows for an exceptional perspective with its ability to generate higher than ordinary (i.e., desktop) video resolutions, as well as to provide a greater depth of view with its 3-Dimensional configurations, immersing our audiences into the contents of our presentations. The resolution of 20 million pixels helps accomplish better detail than IMAX, which has a resolution of around 8 million pixels; a standard HD monitor has around 2 million pixels.

The AVC is proud of its truly interdisciplinary approach. We have hosted and helped a wide variety of departments, including Art History, Geography, Archeology, Bio-Materials, Film Production, Electromagnetism, Electrical Engineering and Marine Biology. The collaboration between the AVC staff, students, and faculty brings new insights to class lectures and student research projects. Our job at the AVC is to help students and faculty develop a more symphonic perspective, in order to attack their projects efficiently as possible. The Center also contains a student visualization lab dedicated to those who would like to work on projects, presentations, research, or simply learn techniques used in the visualization field. The AVC also serves as a resource, service and educational center that will continue our community’s contributions to the development of the next generation of researchers. The hope is all users will gain a new perspective on data, and also a new foundation in computational modeling and software usage techniques.

The visualization lab is open from 9:00 a.m. to 9:30 p.m. Monday through Friday. The lab, as well as the lecture hall, can be reserved by faculty; details can be found at avc.web.usf.edu. It’s important to understand that visualization is not just about pretty graphs and models; it is more about telling the story behind the data. Using correct visualization techniques helps reveal patterns and correlations that one might have never thought of or seen along the way. Here at the Center we are currently developing multiple ways to interact with the display wall, such as gesture control using Microsoft KinectSystem, Nintendo Wii Controllers, iPad, iPhone, and Android devices. We are also available to work on research grants and will be holding visualization workshops and showing educational media throughout the semester. For more information visit avc.web.usf.edu.
Non-Traditional Teaching Methods in Large Classroom Physics Classes: A Flipped-Classroom Model
Gerald Woods, Instructor

Many universities nationwide offer science courses in which there are well over 100 students registered for the course. In most cases, auditoriums are equipped with projector technologies and whiteboards for instructors of these large section courses to convey information to the students. For either one or both of these deliveries, students generally attempt to listen to the instructor as a physical concept is conveyed, while at the same time recording every item (i.e., written concepts, equations, graphs, etc.) they see and hear, along with any personal thoughts and questions they may have about these items. Though this method of delivery may be somewhat overwhelming and tedious for students in these large courses (and in small classroom courses as well), this method is still not that uncommon. In fact, despite the poor performance in student assessment, especially in the areas of general chemistry and general physics, this instructional strategy still persists in many large classrooms on many campuses around the country.

“Preliminary results from applying flipped-classroom principles show an increase in test averages.”

Today’s general physics instruction, for both large and small lecture classes, has a single primary goal: to increase students’ conceptual understanding of physical concepts. Typically, along with the basic instructional model mentioned above for the lecture course, a general physics student attends a laboratory taught by a graduate teaching assistant (GTA) for no more than three hours per week, as well as a recitation session focused on problem-solving strategies. Usually, the three elements (lecture, lab, and recitation) are tied together into one course package. The recitation session serves a different purpose than the other choices do not. Nonetheless, the purpose remains about the same: to deliver traditional lecture material to the students’ learning environment of their choosing.

What are some of the advantages of this type of teaching approach? (1) Whether it is at home, the library, or some other location where a computer is available, the student has more freedom to “take in” as much of the material as they can manage. This, of course, includes the student’s ability to rewind and observe the information as many times as it takes.

Further, for students commuting or for those on travel, such as for athletics or other official university functions, the material is not gathered secondhand. But rather, the material is recorded and available for the student for convenient viewing and processing. (2) Faculty, for either large or small classroom sizes, can now focus where the focus is needed the most: to help students with problem-solving strategies, observe and discuss actual applications and demonstrations, and initiate peer collaboration with the instructor present to facilitate the discussion. Though this can be done in recitation and in the laboratory, this would not, in most cases, involve the actual faculty overseeing the course but rather a capable, but non-experienced GTA. (3) And finally, this approach allows the instructor to become more creative in creating an engaging and innovative learning environment, which is especially important for large classroom sections.

Preliminary results from applying flipped-classroom principles show an increase in test averages. However, to truly understand if this method is better than the traditional lecture model coupled with problem solving courses and labs, a more rigorous evaluation process of gains in conceptual development must be undertaken. This would involve pre-lecture and post-lecture assessments that compare students in the traditional format to those in the flipped-classroom format.

Many research universities are now trying to find more creative ways to allow more opportunities for inquiry and discovery among students and increase professor-student and student peer interactions, especially in the general physics and general chemistry courses. The flipped-classroom model is one method in which these improvements could become more feasible, especially in large-classroom settings.

Gerald Woods holds the rank of Instructor and is the Director of the General Physics Labs. He joined the Department of Physics in August of 2003. He has published numerous papers in magnetic materials and point-contact spectroscopy since joining USF. Presently, he is researching effective teaching strategies for general physics students in the algebra-based class.

continued from page 8

continued from page 9
We've all been there: sitting at our dining room table with a cup of coffee, a pen, and a stack of student papers awaiting our critical assessment. And while this may be a romantic picture for some, it is less than ideal for many reasons. The first being that we need to carry stacks of student papers wherever we go. The second being that all the work we do assessing writing, all the feedback and conversation we enact on our students' pages, gets lost as soon as we hand those papers back to our students. At worst, our feedback becomes fodder; at best, it sits in a stack on the floor, unable to influence the student's future writing in the ways we imagine. In addition to the above concerns, as teachers, we find ourselves writing the same types of comments over and over again. As teachers in the English department, we are intimately aware of these realities. These stacks of papers not only come two or three times a semester, but rather nearly every week, as we grade first, second, and final drafts of all three major projects.

Over the last few years, the First-Year Composition (FYC) program, in coordination with USF web developers, has created an online writing assessment tool called My Reviewers (myreviewers.com). This program allows students the opportunity to upload all of their drafts and final papers to this easy-to-use online software. Once uploaded, students can not only assess the text with a fully-integrated, clickable rubric but also interact with the text uploaded, providing real-time feedback on student work, and having students do the same kind of real-time work has been very rewarding.

That being said, it's not just the fact that teachers can collect all student papers and grade using markup tools that makes My Reviewers so appealing and effective. In addition to the markup tools, what truly makes My Reviewers productive to use are the features of the tool that go beyond just responding to student work online. For example, My Reviewers provides all instructors with a wide variety of features, some of which are featured below:

Common Comments
Thanks to the hard work and dedication of the graduate students and adjuncts in the program, the tool carries a feature called Common Comments. Common Comments is an aggregate of all the best, most prevalent comments used by instructors placed in branch view so that instructors can simply insert a comment.

Learning Analytics
On a much larger scale, My Reviewers affords teachers, administrators, and researchers the opportunity to analyze large amounts of data. In addition to being able to track the sheer number of papers uploaded as well as having the opportunity to go back and see the text and comments of each draft, users can also view data visualizations of student performance in any and all of the rubric criteria for individual projects and project sequences over the course of a semester.

The tool, while developed by the English department, is not just for English courses. Teachers from a wide variety of fields and departments will find value in using My Reviewers in their assessment of student writing.

As a USF faculty member, you may use the tool for free if your usage is limited to one project, including multiple drafts. More extended usage requires a $20.00 fee/semester for students. In our experience, extended usage of the tool—for multiple projects and drafts—is most productive.

Over the last three years, our 4,000 or so unique students each year have used the tool with ease.

As the instructor, you define the number of projects and drafts that students are required to complete. Already integrated into USF's single-sign-on system and Oasis database, you can tailor the tool to your course(s) in a few moments; thereafter the tool organizes your students by the classes and sections you teach. If you teach a large section with multiple graders, My Reviewers is a lifesaver in terms of enhancing objective responses. If you believe in peer review yet have been dissatisfied with students' comments on one another's drafts, you'll be extremely pleased with My Reviewers' revolutionary reworking of peer-review processes.

If you are interested in implementing My Reviewers into your own assessment practices, contact Dr. Joseph Moxley in the Department of English at moxley@usf.edu.

Daniel Richards is a doctoral candidate in the Department of English. He was involved in the development of My Reviewers since 2010 and part of the FYC administration since 2009.
Submissions

Faculty Voices is a scholarly publication that is written by and for faculty at the University of South Florida (USF). It is published by USF’s Academy for Teaching and Learning Excellence (ATLE). Its purpose is to provide an exchange of ideas on teaching and learning for the university’s community of teachers and scholars. It is envisioned that this publication will inspire more dialogue among faculty, whether in hallway discussions, departmental meetings, or in written articles. This publication represents an opportunity for faculty to reach their peers throughout the growing USF community. Faculty Voices invites you to contribute your ideas on teaching and learning in a short essay.

See the guidelines for submission online at atle.usf.edu. Please send your submissions to atle@usf.edu.

Follow us online at atle.usf.edu!

Academy for Teaching and Learning Excellence (ATLE)
University of South Florida
4202 E. Fowler Avenue, ALN 185
Tampa, FL 33620