(UN)DISCIPLINING PEDAGOGY: TRANSDISCIPLINARY ANALYSIS OF TA PROFESSIONAL DEVELOPMENT PROGRAMS

Jennifer E. Lewis1, Amanda Helip-Wooley2, Christina Partin3, and Maralee Mayberry3
Department of Chemistry1, Center for Improvement of Teaching and Research on Undergraduate STEM Education1, Academy for Teaching and Learning Excellence2, Department of Sociology3, University of South Florida, Tampa FL

GOAL 1: QUALITY EXPERIENCES FOR UNDERGRADS

Constraint: Volume of Undergraduate Students

Solution: Instructional Team Approach

Multiple sections of laboratory courses are staffed by graduate teaching assistants (TAs) under the direction of specific course coordinators to accommodate student demand. Weekly meetings for each specific course are used to provide guidance in managing common student difficulties.

Large-enrollment lecture courses are taught by faculty and a team of graduate teaching assistants (TAs) under the direction of a specific course coordinator. The teaching assistants receive mentoring and feedback throughout the course as they develop skills in implementing specific pedagogical strategies and managing large class dynamics.

Unresolved Constraint: Size of TA Training Class

Coordination and support for large numbers of teaching assistants results in much larger "class sizes" for teaching assistants than the size of the laboratory sections they teach. Weekly meetings for each specific course are used to provide guidance in managing common student difficulties.

GOAL 2: PREPARING FUTURE PROFESSIONALS

Constraint: Faculty/Stakeholder Buy-In

Solution: Use of Capital to Create Professional Development

Graduate students teaching introductory biology and chemistry laboratories participated in a STEM-specific training workshop at the beginning of Fall 2016. The workshop was co-developed by the Academy for Teaching and Learning Excellence, the course coordinators, and TAs. Although the group of teaching assistants being mentored by the lecture instructor is the same size as a typical graduate course, the mentoring activities are not seen as part of the faculty member’s course load. Few faculty have been willing to donate time in this way.

Unresolved Constraint: Sustainability

Before taking on an independent teaching assignment, graduate students take a course on teaching in the discipline. Later, they submit a teaching portfolio for review. Both are part of the formal degree program and overseen by a Director of Pedagogy.

GOAL 3: TRANSFERABLE JOB SKILLS

Constraint: Connecting Teaching to Careers

Solution: Enhancing Future Prospects through Communication

Elements of pedagogical training that are relevant to developing good professional communication skills are being identified by a new proposed graduate course elective focusing on scientific communication.

Unresolved Constraint: Lack of Curriculum

The proposed course is an elective, so it has an uncertain audience. Currently, there are few other avenues for this sort of professional development of transferable job skills, most of them informal.

Acknowledgment: This poster is based in part on work supported by the National Science Foundation under Grant #1525574. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

STEER: NSF Grant #1525574
Systemic Transformation of Education through Evidence-Based Reform, or STEER, is an NSF funded partnership between the University of South Florida (USF) and Hillsborough Community College (HCC). The goal of STEER is to create a student-focused culture of evidence-based teaching in Tampa Bay’s public post-secondary institutions. This culture leads to the successful recruitment, retention and graduation of diverse First Time in College (FTIC) and transfer students who are prepared for life, citizenship, transfer, and careers in STEM. One important aspect of this goal is to improve the support and training received by graduate teaching assistants, who are the primary source of laboratory instruction for STEM students.

Two faculty members carry primary responsibility for all aspects of the teaching professional development portions of the graduate program, many of which are not formally recognized as “in-load” and require a particular knowledge base and skill set. When lecture instructors have to take on the time-consuming life events present themselves, what will happen to these aspects of the program?

Two faculty members carry primary responsibility for all aspects of the teaching professional development portions of the graduate program, many of which are not formally recognized as “in-load” and require a particular knowledge base and skill set.