Introduction to Anaerobic Biodigesters

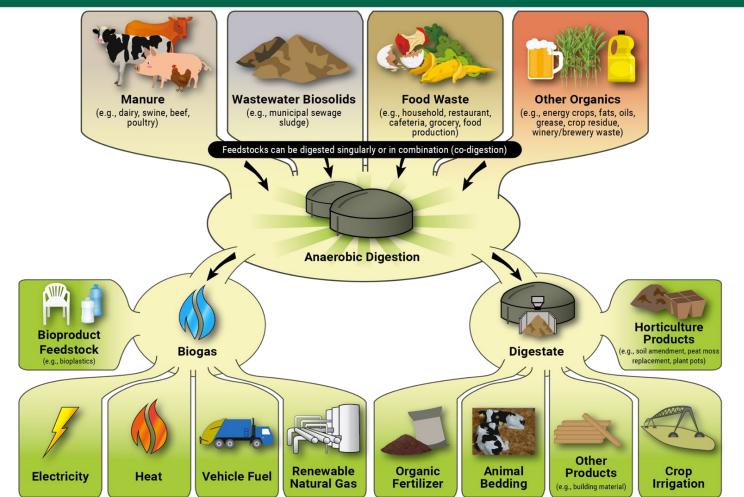
Objectives

Students will be able to...

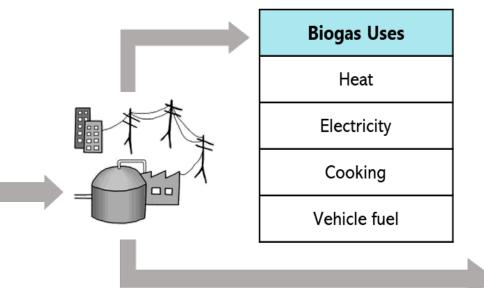
- ★ Describe a sustainable energy choice and its impact on the environment by explaining the process of biodigesters
- ★ Explain how biodigesters contribute to a waste management system by describing the process of anaerobic digestion and its advantages

What does the cooking process look like for you?

Energy sources from gas



Cogeneration plant


Food waste

Sewage sludge

Wastewater

Livestock waste

Crop waste

Digestate Uses

Fertilizer

Soil amendment

Livestock bedding

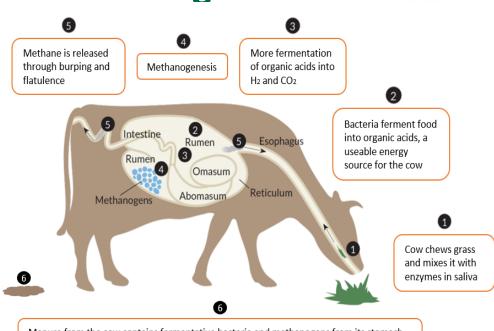
What is anaerobic digestion?

The breakdown of organic matter in an environment with no oxygen

Organic waste → Energy

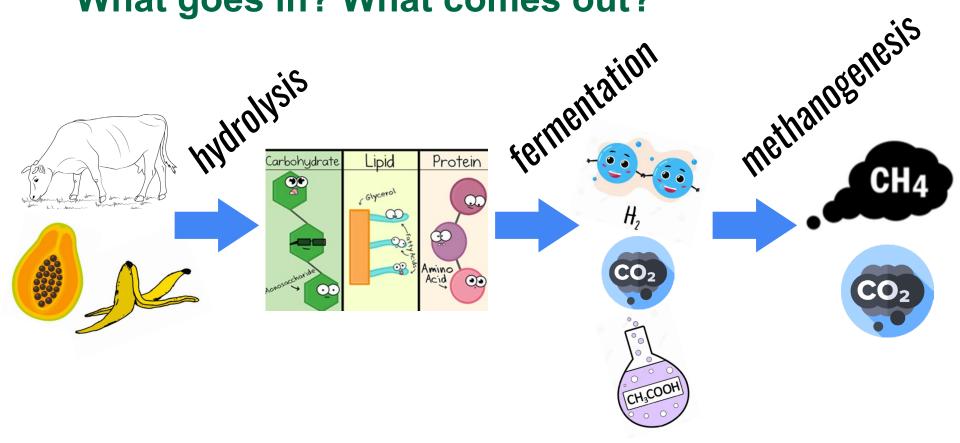
"an-": without, no

"aerobic": oxygen


organic matter: living or used to be living

Microorganisms in Anaerobic Digestion

Natural sources of microorganisms are in cow and goat manure, or poop. (**inoculum** for anaerobic digestion)



Manure from the cow contains fermentative bacteria and methanogens from its stomach, so it can be used as inoculum to start the anaerobic digestion process in a new biodigester

Anaerobic conditions	No air should enter the system.	
Inoculum	A solution with microorganisms to start the process, found in manure	
Feedstock	Organic material, food for the microorganisms. Also called substrate	
Biogas	The gas produced by anaerobic digestion, which is mostly made up of carbon dioxide and methane	
Digestate	A high-nutrient product of anaerobic digestion	

What goes in? What comes out?

What do these foods have in common?

Yogurt

Cheese

Pickles

Bread

How can Anaerobic Digestion solve problems?

Problem	Solution
Climate change caused by burning fossil fuels to create electricity	
Air pollution caused by cooking over a fire	
Poor sanitation - nowhere to put our human waste or food waste like kitchen scraps	
High cost and environmental damage of synthetic fertilizer	

How can Anaerobic Digestion solve problems?

Problem	Solution
Climate change caused by burning fossil fuels to create electricity	Use anaerobic digestion to produce clean energy without emissions
Air pollution caused by cooking over a fire	Use biogas, produced by anaerobic digestion , to cook instead of firewood
Poor sanitation - nowhere to put our human waste or food waste like kitchen scraps	Use waste as an input to the anaerobic digester , where it will be turned into valuable end products
High cost and environmental damage of synthetic fertilizer	Organic, nutrient-dense fertilizer is a product of anaerobic digestion

Let's look at **biogas uses** and **digestate uses** around the world...

China

Kenya: clean cooking in homes

South America: Sludge Treatment Plant

USA: Sewage sludge digester

Costa Rica: Biodigester in a tubular reactor

Benefits of using anaerobic digestion

- Processing human waste and other organic waste
 - Minimizes odors and potential pathogens
 - Low energy is required than in aerobic digestion, since no aeration or air flow is needed
- Produce useful biogas
 - Vehicle fuels (cars, buses), electricity generation, cooking, or heating a home
- Producing nutrient-rich digestate
 - o cheaper and better for the environment than synthetic fertilizer

Disadvantages of using anaerobic digestion

- The biodigester must operate correctly to keep the microbes happy
 - Correct amount of feedstock
 - No chemicals or heavy metals in the feedstock
- Some biodigesters need more monitoring
 - O Correct temperature, pH, water content
 - O Biogas must be burned methane is a greenhouse gas
 - Leaks in the biodigester or gas pipes could harm air quality or water supply

Biodigester: How does it work?

Microorganisms like bacteria and archaea carry out chemical processes, converting feedstock particles into biogas. Digestate is also left over - it is the undigested food waste and the dead microorganisms.

Large particles of feedstock

These are particles of feedstock that are too big for microorganisms to consume

Smaller feedstock particles

These are smaller fatty acids, carbohydrates, and proteins

Acetic acid, hydrogen gas, and carbon dioxide

These are some of the end products of fermentation

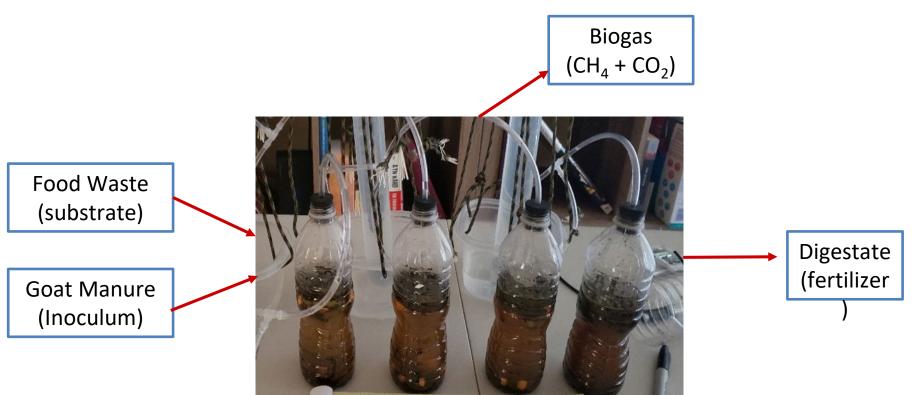
Biogas

Methane from methanogenesis mixed with the carbon dioxide produced in fermentation

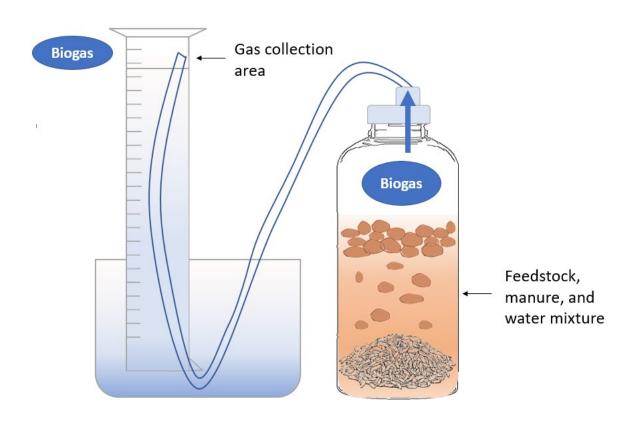
Hydrolysis

Large organic molecules are broken down into smaller ones by bacteria.

Fermentation

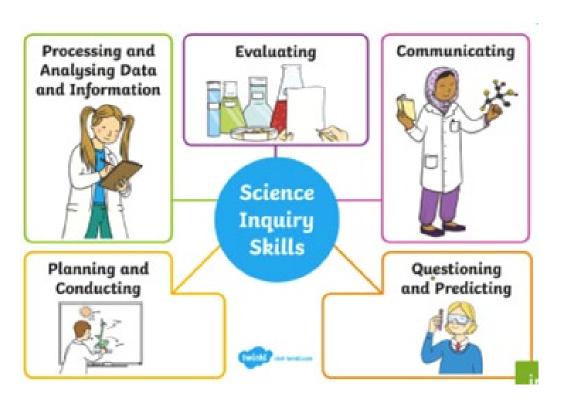

Fermentative bacteria consume lipids, carbohydrates, and proteins to make hydrogen gas, carbon dioxide, and acetic acid.

Methanogenesis


Archaea can perform two types of methanogenesis. Methane is produced from hydrogen gas and carbon dioxide, or from acetic acid.

Small-Scale Biodigester Model

Small-Scale Biodigester Model



Science Process Skills

In this project, we will:

- Learn about biodigesters
- Form a hypothesis
- Build an experimental setup
- Take measurements
- Analyze data
- Share results

Questions?

