CDDI Focus on Technology: High throughput Parallel Artificial Membrane Permeability Assay (PAMPA)

Instrument: TECAN EVO 150 automated workstation, TECAN infinite 1000 pro microplate reader

Screening Tools from Pion: Double-Sink™ PAMPA, Gut-Box™ and PAMPA Evolution software

PAMPA is applied as an *in vitro* model of passive transcellular permeability. The Double-Sink PAMPA method uses an optimized mixture of phospholipids infused into lipophilic filter support which creates an artificial membrane. Such membranes immobilized on a filter are placed between a donor and acceptor compartments mimicking the cell barriers characteristic of gastrointestinal tract (GIT) or the blood-brain barrier (BBB). The GIT PAMPA will evaluate how the drug candidate might be absorbed across the gastrointestinal tract and the BBB PAMPA will predict the ability of a central nervous system (CNS)-targeting drug candidate for crossing the blood-brain barrier to reach its therapeutic receptors inside the brain.

Each drug candidate is introduced to the donor compartment. After 30-60' minutes incubation/stirring period using the Gut-Box, the concentration of drug in the donor and acceptor compartments is measured using UV spectroscopy.

- PAMPA proposes a fast and economical permeability screening of multiple drug candidates compared to cell based Caco2- or MDCK based screens, which need costly provision for cells.
- PAMPA implemented on the Tecan Freedom EVO 150 workstation (3 arms: 96 channels, 8-span liquid handler and robotic manipulator; plate reader: Infinite 1000 pro microplate reader) with fully automated data collection is capable of analyzing up to 600 samples per day.

Selected References and Information

For More Information on Instrument Availability and Screening Please Contact:
Laurent Calcul, Ph.D. - Chemodiversity facility Manager, CDDI / calcul@usf.edu / Phone: 813-974-0112