Anti-thrombotic and bleeding time prolongation model in rabbit

[^0]
Background

We are a large pharmaceutical company with a worldwide footprint and are searching for an in vivo model in rabbit.

Although we are committed to reduce the usage of animals for Research \& Development purposes as much as possible, alternative in vitro assays cannot replace those in vivo models completely yet.

We would thus like to use such a large animal in vivo model for testing of drug candidates. New and safe anti-thrombotic treatment therapies during intensive medical care are still needed. With such a model we would like to investigate the efficacy and therapeutic window of potential new drugs.

What we're looking for

We are looking for a combined anti-thrombotic and bleeding time prolongation model in rabbit.

Our must-have requirements are:

- Long-time experience in working with rabbits and highest animal welfare standards
- You must be able to treat the animals under narcotic conditions via continuous infusion of at least 2 h
- Experience with ferric chloride vessel damage and bleeding time measurements
- Experience with blood sampling and generation of plasma without triggering the coagulation system

Our nice-to-have requirements are:

- Whole blood analysis capabilities

Acceptable technology readiness levels (TRL): Levels 4-9

1. Basic principles observed
2. Concept development
3. Experimental proof of concept
4. Validated in lab conditions
5. Validated in relevant environment
6. Demonstrated in relevant environment
7. Regulatory approval
8. Product in production
9. Product in market

What we can offer you

Eligible partnership models:

- Sponsored research
- Supply/purchase
- Licensing

Benefits:

Sponsored Research
We are interested in follow-on research collaborations with relevant teams, including sponsored research or involvement of collaborators on a consultancy basis.

Please contact the University of South Florida Technology Transfer office representative for submission - Roisin McNally at rmcnally@usf.edu.

[^0]: θ medicine

